Yardenfren commited on
Commit
b678ee9
·
verified ·
1 Parent(s): 252e51a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +65 -3
README.md CHANGED
@@ -1,3 +1,65 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: openrail++
3
+ library_name: diffusers
4
+ tags:
5
+ - text-to-image
6
+ - text-to-image
7
+ - diffusers-training
8
+ - diffusers
9
+ - lora
10
+ - template:sd-lora
11
+ - stable-diffusion-xl
12
+ - stable-diffusion-xl-diffusers
13
+ base_model: stabilityai/stable-diffusion-xl-base-1.0
14
+ instance_prompt: A [v] toy
15
+ widget:
16
+ - text: ' '
17
+ output:
18
+ url: image1.jpeg
19
+ ---
20
+
21
+ <!-- This model card has been generated automatically according to the information the training script had access to. You
22
+ should probably proofread and complete it, then remove this comment. -->
23
+
24
+
25
+ # 'SDXL B-LoRA - lora-library/B-LoRA-drawing4
26
+
27
+ <Gallery />
28
+
29
+ ## Model description
30
+
31
+ These are lora-library/B-LoRA-drawing4 LoRA adaption weights for stabilityai/stable-diffusion-xl-base-1.0.
32
+
33
+ The weights were trained using [DreamBooth](https://dreambooth.github.io/).
34
+
35
+ LoRA for the text encoder was enabled: False.
36
+
37
+ Special VAE used for training: madebyollin/sdxl-vae-fp16-fix.
38
+
39
+ ## Trigger words
40
+
41
+ You should use "A [v] toy" to trigger the image generation.
42
+
43
+ ## Download model
44
+
45
+ Weights for this model are available in Safetensors format.
46
+
47
+ [Download](lora-library/B-LoRA-toy_storee/tree/main) them in the Files & versions tab.
48
+
49
+
50
+
51
+ ## Intended uses & limitations
52
+
53
+ #### How to use
54
+
55
+ ```python
56
+ # TODO: add an example code snippet for running this diffusion pipeline
57
+ ```
58
+
59
+ #### Limitations and bias
60
+
61
+ [TODO: provide examples of latent issues and potential remediations]
62
+
63
+ ## Training details
64
+
65
+ [TODO: describe the data used to train the model]