File size: 5,751 Bytes
ca770e9
 
 
 
0fadd5e
ca770e9
 
0b7a4d0
 
0fadd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1d0285
 
 
 
bdddd1b
a1d0285
 
 
bdddd1b
 
 
a1d0285
 
 
 
bdddd1b
a1d0285
 
 
4727c2e
a1d0285
bdddd1b
a1d0285
 
 
bdddd1b
 
deabee8
f8985fb
deabee8
f8985fb
deabee8
 
1158ae6
 
a1d0285
bdddd1b
a1d0285
bdddd1b
a1d0285
bdddd1b
a1d0285
bdddd1b
a1d0285
0fadd5e
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
---
language:
- zh
- en
license: apache-2.0
tags:
- Cantonese
- Qwen2
- chat
datasets:
- jed351/cantonese-wikipedia
- raptorkwok/cantonese-traditional-chinese-parallel-corpus
pipeline_tag: text-generation
model-index:
- name: Qwen2-Cantonese-7B-Instruct
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 54.35
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 32.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 8.76
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.04
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 7.81
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 31.59
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=lordjia/Qwen2-Cantonese-7B-Instruct
      name: Open LLM Leaderboard
---

# Qwen2-Cantonese-7B-Instruct

## Model Overview / 模型概述

Qwen2-Cantonese-7B-Instruct is a Cantonese language model based on Qwen2-7B-Instruct, fine-tuned using LoRA. It aims to enhance Cantonese text generation and comprehension capabilities, supporting various tasks such as dialogue generation, text summarization, and question-answering.

Qwen2-Cantonese-7B-Instruct係基於Qwen2-7B-Instruct嘅粵語語言模型,使用LoRA進行微調。 它旨在提高粵語文本的生成和理解能力,支持各種任務,如對話生成、文本摘要和問答。

## Model Features / 模型特性

- **Base Model**: Qwen2-7B-Instruct
- **Fine-tuning Method**: LoRA instruction tuning
- **Training Steps**: 4572 steps
- **Primary Language**: Cantonese / 粵語
- **Datasets**:
  - [jed351/cantonese-wikipedia](https://huggingface.co/datasets/jed351/cantonese-wikipedia)
  - [raptorkwok/cantonese-traditional-chinese-parallel-corpus](https://huggingface.co/datasets/raptorkwok/cantonese-traditional-chinese-parallel-corpus)
- **Training Tools**: [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory)

## Quantized Version / 量化版本

A 4-bit quantized version of this model is also available: [qwen2-cantonese-7b-instruct-q4_0.gguf](https://huggingface.co/lordjia/Qwen2-Cantonese-7B-Instruct/blob/main/qwen2-cantonese-7b-instruct-q4_0.gguf).

此外,仲提供此模型嘅4位量化版本:[qwen2-cantonese-7b-instruct-q4_0.gguf](https://huggingface.co/lordjia/Qwen2-Cantonese-7B-Instruct/blob/main/qwen2-cantonese-7b-instruct-q4_0.gguf)。

## Alternative Model Recommendations / 備選模型舉薦

For alternatives, consider the following models, both fine-tuned by LordJia on Cantonese language tasks:

揾其他嘅話,可以諗下呢啲模型,全部都係LordJia用廣東話嘅工作調教好嘅:

1. [Llama-3-Cantonese-8B-Instruct](https://huggingface.co/lordjia/Llama-3-Cantonese-8B-Instruct) based on Meta-Llama-3-8B-Instruct.
2. [Llama-3.1-Cantonese-8B-Instruct](https://huggingface.co/lordjia/Llama-3.1-Cantonese-8B-Instruct) based on Meta-Llama-3.1-8B-Instruct.

## License / 許可證

This model is licensed under the Apache 2.0 license. Please review the terms before use.

此模型喺Apache 2.0許可證下獲得許可。 請在使用前仔細閱讀呢啲條款。

## Contributors / 貢獻

- LordJia [https://ai.chao.cool](https://ai.chao.cool/)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_lordjia__Qwen2-Cantonese-7B-Instruct)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |23.50|
|IFEval (0-Shot)    |54.35|
|BBH (3-Shot)       |32.45|
|MATH Lvl 5 (4-Shot)| 8.76|
|GPQA (0-shot)      | 6.04|
|MuSR (0-shot)      | 7.81|
|MMLU-PRO (5-shot)  |31.59|