File size: 2,083 Bytes
f1fb9b4 573de2d f1fb9b4 573de2d f1fb9b4 573de2d f1fb9b4 573de2d f1fb9b4 573de2d f1fb9b4 573de2d f1fb9b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
language:
- zh
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_11_0
model-index:
- name: Whisper Small Chinese
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Small Chinese
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_11_0 zh-CN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3226
- Cer: 10.9782
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 10000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Cer |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
| 0.3998 | 0.1 | 1000 | 0.2898 | 19.1261 |
| 0.2414 | 1.07 | 2000 | 0.2826 | 12.7761 |
| 0.1197 | 2.04 | 3000 | 0.2952 | 12.4320 |
| 0.2034 | 3.0 | 4000 | 0.2962 | 13.1970 |
| 0.0344 | 3.1 | 5000 | 0.3039 | 11.5122 |
| 0.0226 | 4.07 | 6000 | 0.3083 | 11.3549 |
| 0.0097 | 5.04 | 7000 | 0.3187 | 11.4440 |
| 0.0121 | 6.01 | 8000 | 0.3173 | 11.2258 |
| 0.0015 | 6.11 | 9000 | 0.3219 | 11.1410 |
| 0.0019 | 7.07 | 10000 | 0.3226 | 10.9782 |
### Framework versions
- Transformers 4.28.0.dev0
- Pytorch 2.0.0+cu117
- Datasets 2.11.1.dev0
- Tokenizers 0.13.2
|