--- license: apache-2.0 base_model: facebook/convnextv2-tiny-1k-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8649532710280374 --- # convnextv2-tiny-1k-224-finetuned-cassava-leaf-disease This model is a fine-tuned version of [facebook/convnextv2-tiny-1k-224](https://huggingface.co/facebook/convnextv2-tiny-1k-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4109 - Accuracy: 0.8650 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 480 - eval_batch_size: 480 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 1920 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 7.8796 | 0.98 | 10 | 3.9572 | 0.1706 | | 2.3762 | 1.95 | 20 | 1.4334 | 0.6178 | | 1.1413 | 2.93 | 30 | 0.8877 | 0.6841 | | 0.7549 | 4.0 | 41 | 0.6403 | 0.7724 | | 0.5904 | 4.98 | 51 | 0.5366 | 0.8098 | | 0.5152 | 5.95 | 61 | 0.4799 | 0.8369 | | 0.4764 | 6.93 | 71 | 0.4567 | 0.8486 | | 0.4386 | 8.0 | 82 | 0.4421 | 0.8509 | | 0.4306 | 8.98 | 92 | 0.4381 | 0.8519 | | 0.4266 | 9.95 | 102 | 0.4296 | 0.8603 | | 0.4072 | 10.93 | 112 | 0.4196 | 0.8593 | | 0.4033 | 12.0 | 123 | 0.4127 | 0.8621 | | 0.3982 | 12.98 | 133 | 0.4125 | 0.8640 | | 0.3993 | 13.95 | 143 | 0.4097 | 0.8631 | | 0.3812 | 14.63 | 150 | 0.4109 | 0.8650 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.1