davda54 commited on
Commit
1d3b2df
1 Parent(s): 61f7c55

Update modeling_norbert.py

Browse files
Files changed (1) hide show
  1. modeling_norbert.py +12 -47
modeling_norbert.py CHANGED
@@ -59,13 +59,6 @@ class MaskClassifier(nn.Module):
59
  )
60
  self.initialize(config.hidden_size, subword_embedding)
61
 
62
- def initialize(self, hidden_size, embedding):
63
- std = math.sqrt(2.0 / (5.0 * hidden_size))
64
- nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
65
- self.nonlinearity[-1].weight = embedding
66
- self.nonlinearity[1].bias.data.zero_()
67
- self.nonlinearity[-1].bias.data.zero_()
68
-
69
  def forward(self, x, masked_lm_labels=None):
70
  if masked_lm_labels is not None:
71
  x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
@@ -106,11 +99,6 @@ class FeedForward(nn.Module):
106
  )
107
  self.initialize(config.hidden_size)
108
 
109
- def initialize(self, hidden_size):
110
- std = math.sqrt(2.0 / (5.0 * hidden_size))
111
- nn.init.trunc_normal_(self.mlp[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
112
- nn.init.trunc_normal_(self.mlp[-2].weight, mean=0.0, std=std, a=-2*std, b=2*std)
113
-
114
  def forward(self, x):
115
  return self.mlp(x)
116
 
@@ -170,15 +158,6 @@ class Attention(nn.Module):
170
  bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
171
  return bucket_pos
172
 
173
- def initialize(self):
174
- std = math.sqrt(2.0 / (5.0 * self.hidden_size))
175
- nn.init.trunc_normal_(self.in_proj_qk.weight, mean=0.0, std=std, a=-2*std, b=2*std)
176
- nn.init.trunc_normal_(self.in_proj_v.weight, mean=0.0, std=std, a=-2*std, b=2*std)
177
- nn.init.trunc_normal_(self.out_proj.weight, mean=0.0, std=std, a=-2*std, b=2*std)
178
- self.in_proj_qk.bias.data.zero_()
179
- self.in_proj_v.bias.data.zero_()
180
- self.out_proj.bias.data.zero_()
181
-
182
  def compute_attention_scores(self, hidden_states, relative_embedding):
183
  key_len, batch_size, _ = hidden_states.size()
184
  query_len = key_len
@@ -246,13 +225,6 @@ class Embedding(nn.Module):
246
  self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
247
  self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
248
 
249
- self.initialize()
250
-
251
- def initialize(self):
252
- std = math.sqrt(2.0 / (5.0 * self.hidden_size))
253
- nn.init.trunc_normal_(self.relative_embedding, mean=0.0, std=std, a=-2*std, b=2*std)
254
- nn.init.trunc_normal_(self.word_embedding.weight, mean=0.0, std=std, a=-2*std, b=2*std)
255
-
256
  def forward(self, input_ids):
257
  word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
258
  relative_embeddings = self.relative_layer_norm(self.relative_embedding)
@@ -273,7 +245,18 @@ class NorbertPreTrainedModel(PreTrainedModel):
273
  module.activation_checkpointing = value
274
 
275
  def _init_weights(self, module):
276
- pass # everything is already initialized
 
 
 
 
 
 
 
 
 
 
 
277
 
278
 
279
  class NorbertModel(NorbertPreTrainedModel):
@@ -414,15 +397,6 @@ class Classifier(nn.Module):
414
  nn.Dropout(drop_out),
415
  nn.Linear(config.hidden_size, num_labels)
416
  )
417
- self.hidden_size = config.hidden_size
418
- self._init_weights()
419
-
420
- def _init_weights(self):
421
- std = math.sqrt(2.0 / (5.0 * self.hidden_size))
422
- nn.init.trunc_normal_(self.nonlinearity[1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
423
- nn.init.trunc_normal_(self.nonlinearity[-1].weight, mean=0.0, std=std, a=-2*std, b=2*std)
424
- self.nonlinearity[1].bias.data.zero_()
425
- self.nonlinearity[-1].bias.data.zero_()
426
 
427
  def forward(self, x):
428
  x = self.nonlinearity(x)
@@ -439,12 +413,6 @@ class NorbertForSequenceClassification(NorbertModel):
439
  self.num_labels = config.num_labels
440
  self.head = Classifier(config, self.num_labels)
441
 
442
- def post_init(self):
443
- self.head._init_weights()
444
-
445
- def _init_weights(self):
446
- self.head._init_weights()
447
-
448
  def forward(
449
  self,
450
  input_ids: Optional[torch.Tensor] = None,
@@ -511,9 +479,6 @@ class NorbertForTokenClassification(NorbertModel):
511
  self.num_labels = config.num_labels
512
  self.head = Classifier(config, self.num_labels)
513
 
514
- def post_init(self):
515
- self.head._init_weights()
516
-
517
  def forward(
518
  self,
519
  input_ids: Optional[torch.Tensor] = None,
 
59
  )
60
  self.initialize(config.hidden_size, subword_embedding)
61
 
 
 
 
 
 
 
 
62
  def forward(self, x, masked_lm_labels=None):
63
  if masked_lm_labels is not None:
64
  x = torch.index_select(x.flatten(0, 1), 0, torch.nonzero(masked_lm_labels.flatten() != -100).squeeze())
 
99
  )
100
  self.initialize(config.hidden_size)
101
 
 
 
 
 
 
102
  def forward(self, x):
103
  return self.mlp(x)
104
 
 
158
  bucket_pos = torch.where(abs_pos <= mid, relative_pos, log_pos * sign).long()
159
  return bucket_pos
160
 
 
 
 
 
 
 
 
 
 
161
  def compute_attention_scores(self, hidden_states, relative_embedding):
162
  key_len, batch_size, _ = hidden_states.size()
163
  query_len = key_len
 
225
  self.relative_embedding = nn.Parameter(torch.empty(2 * config.position_bucket_size - 1, config.hidden_size))
226
  self.relative_layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
227
 
 
 
 
 
 
 
 
228
  def forward(self, input_ids):
229
  word_embedding = self.dropout(self.word_layer_norm(self.word_embedding(input_ids)))
230
  relative_embeddings = self.relative_layer_norm(self.relative_embedding)
 
245
  module.activation_checkpointing = value
246
 
247
  def _init_weights(self, module):
248
+ std = math.sqrt(2.0 / (5.0 * self.hidden_size))
249
+
250
+ if isinstance(module, nn.Linear):
251
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
252
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
253
+ if module.bias is not None:
254
+ module.bias.data.zero_()
255
+ elif isinstance(module, nn.Embedding):
256
+ nn.init.trunc_normal_(module.weight.data, mean=0.0, std=std, a=-2*std, b=2*std)
257
+ elif isinstance(module, nn.LayerNorm):
258
+ module.bias.data.zero_()
259
+ module.weight.data.fill_(1.0)
260
 
261
 
262
  class NorbertModel(NorbertPreTrainedModel):
 
397
  nn.Dropout(drop_out),
398
  nn.Linear(config.hidden_size, num_labels)
399
  )
 
 
 
 
 
 
 
 
 
400
 
401
  def forward(self, x):
402
  x = self.nonlinearity(x)
 
413
  self.num_labels = config.num_labels
414
  self.head = Classifier(config, self.num_labels)
415
 
 
 
 
 
 
 
416
  def forward(
417
  self,
418
  input_ids: Optional[torch.Tensor] = None,
 
479
  self.num_labels = config.num_labels
480
  self.head = Classifier(config, self.num_labels)
481
 
 
 
 
482
  def forward(
483
  self,
484
  input_ids: Optional[torch.Tensor] = None,