Update modeling_norbert.py
Browse files- modeling_norbert.py +8 -2
modeling_norbert.py
CHANGED
@@ -329,6 +329,7 @@ class NorbertModel(NorbertPreTrainedModel):
|
|
329 |
output_hidden_states: Optional[bool] = None,
|
330 |
output_attentions: Optional[bool] = None,
|
331 |
return_dict: Optional[bool] = None,
|
|
|
332 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
333 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
334 |
|
@@ -370,6 +371,7 @@ class NorbertForMaskedLM(NorbertModel):
|
|
370 |
output_attentions: Optional[bool] = None,
|
371 |
return_dict: Optional[bool] = None,
|
372 |
labels: Optional[torch.LongTensor] = None,
|
|
|
373 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
374 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
375 |
|
@@ -446,6 +448,7 @@ class NorbertForSequenceClassification(NorbertModel):
|
|
446 |
output_hidden_states: Optional[bool] = None,
|
447 |
return_dict: Optional[bool] = None,
|
448 |
labels: Optional[torch.LongTensor] = None,
|
|
|
449 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
450 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
451 |
|
@@ -511,6 +514,7 @@ class NorbertForTokenClassification(NorbertModel):
|
|
511 |
output_hidden_states: Optional[bool] = None,
|
512 |
return_dict: Optional[bool] = None,
|
513 |
labels: Optional[torch.LongTensor] = None,
|
|
|
514 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
515 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
516 |
|
@@ -558,7 +562,8 @@ class NorbertForQuestionAnswering(NorbertModel):
|
|
558 |
output_hidden_states: Optional[bool] = None,
|
559 |
return_dict: Optional[bool] = None,
|
560 |
start_positions: Optional[torch.Tensor] = None,
|
561 |
-
end_positions: Optional[torch.Tensor] = None
|
|
|
562 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
563 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
564 |
|
@@ -624,7 +629,8 @@ class NorbertForMultipleChoice(NorbertModel):
|
|
624 |
labels: Optional[torch.Tensor] = None,
|
625 |
output_attentions: Optional[bool] = None,
|
626 |
output_hidden_states: Optional[bool] = None,
|
627 |
-
return_dict: Optional[bool] = None
|
|
|
628 |
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
629 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
630 |
num_choices = input_ids.shape[1]
|
|
|
329 |
output_hidden_states: Optional[bool] = None,
|
330 |
output_attentions: Optional[bool] = None,
|
331 |
return_dict: Optional[bool] = None,
|
332 |
+
**kwargs
|
333 |
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
334 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
335 |
|
|
|
371 |
output_attentions: Optional[bool] = None,
|
372 |
return_dict: Optional[bool] = None,
|
373 |
labels: Optional[torch.LongTensor] = None,
|
374 |
+
**kwargs
|
375 |
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
376 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
377 |
|
|
|
448 |
output_hidden_states: Optional[bool] = None,
|
449 |
return_dict: Optional[bool] = None,
|
450 |
labels: Optional[torch.LongTensor] = None,
|
451 |
+
**kwargs
|
452 |
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
453 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
454 |
|
|
|
514 |
output_hidden_states: Optional[bool] = None,
|
515 |
return_dict: Optional[bool] = None,
|
516 |
labels: Optional[torch.LongTensor] = None,
|
517 |
+
**kwargs
|
518 |
) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]:
|
519 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
520 |
|
|
|
562 |
output_hidden_states: Optional[bool] = None,
|
563 |
return_dict: Optional[bool] = None,
|
564 |
start_positions: Optional[torch.Tensor] = None,
|
565 |
+
end_positions: Optional[torch.Tensor] = None,
|
566 |
+
**kwargs
|
567 |
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
568 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
569 |
|
|
|
629 |
labels: Optional[torch.Tensor] = None,
|
630 |
output_attentions: Optional[bool] = None,
|
631 |
output_hidden_states: Optional[bool] = None,
|
632 |
+
return_dict: Optional[bool] = None,
|
633 |
+
**kwargs
|
634 |
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
635 |
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
636 |
num_choices = input_ids.shape[1]
|