--- language: - 'no' - nb - nn inference: false tags: - T5 - NorT5 - Norwegian - encoder-decoder license: cc-by-4.0 --- # NorT5 x-small ## Other sizes: - [NorBERT 3 xs (15M)](https://huggingface.co/ltg/nort5-xs) - [NorBERT 3 small (40M)](https://huggingface.co/ltg/nort5-small) - [NorBERT 3 base (123M)](https://huggingface.co/ltg/nort5-base) - [NorBERT 3 large (323M)](https://huggingface.co/ltg/nort5-large) ## Example usage This model currently needs a custom wrapper from `modeling_nort5.py`. Then you can use it like this: ```python import torch from transformers import AutoTokenizer from modeling_norbert import NorT5ForConditionalGeneration tokenizer = AutoTokenizer.from_pretrained("path/to/folder") t5 = NorT5ForConditionalGeneration.from_pretrained("path/to/folder") # MASKED LANGUAGE MODELING sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er[MASK_0]." encoding = tokenizer(sentence) input_tensor = torch.tensor([encoding.input_ids]) output_tensor = model.generate(input_tensor, decoder_start_token_id=7, eos_token_id=8) tokenizer.decode(output_tensor.squeeze(), skip_special_tokens=True) # should output: å varme opp # PREFIX LANGUAGE MODELING # you need to finetune this model or use `nort5-{size}-lm` model, which is finetuned on prefix language modeling sentence = "Brukseksempel: Elektrisk oppvarming. Definisjonen på ordet oppvarming er (Wikipedia) " encoding = tokenizer(sentence) input_tensor = torch.tensor([encoding.input_ids]) output_tensor = model.generate(input_tensor, max_new_tokens=50, num_beams=4, do_sample=False) tokenizer.decode(output_tensor.squeeze()) # should output: [BOS]ˈoppvarming, det vil si at det skjer en endring i temperaturen i et medium, f.eks. en ovn eller en radiator, slik at den blir varmere eller kaldere, eller at den blir varmere eller kaldere, eller at den blir ```