File size: 2,444 Bytes
d4938b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: microsoft/swinv2-tiny-patch4-window8-256
tags:
- generated_from_trainer
datasets:
- food101
metrics:
- accuracy
model-index:
- name: swinv2-tiny-patch4-window8-256-finetuned-eurosat
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: food101
type: food101
config: default
split: validation
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.8858613861386139
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# swinv2-tiny-patch4-window8-256-finetuned-eurosat
This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the food101 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3997
- Accuracy: 0.8859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 1.8552 | 1.0 | 592 | 1.1245 | 0.6955 |
| 1.2938 | 2.0 | 1184 | 0.6712 | 0.8131 |
| 1.2294 | 3.0 | 1776 | 0.5354 | 0.8492 |
| 1.0199 | 4.0 | 2368 | 0.4958 | 0.8594 |
| 0.9914 | 5.0 | 2960 | 0.4633 | 0.8678 |
| 0.8786 | 6.0 | 3552 | 0.4390 | 0.8750 |
| 0.806 | 7.0 | 4144 | 0.4206 | 0.8791 |
| 0.7506 | 8.0 | 4736 | 0.4093 | 0.8832 |
| 0.7433 | 9.0 | 5328 | 0.4053 | 0.8841 |
| 0.6393 | 10.0 | 5920 | 0.3997 | 0.8859 |
### Framework versions
- Transformers 4.32.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|