--- license: apache-2.0 tags: - generated_from_trainer datasets: - google/fleurs metrics: - wer model-index: - name: xls-r-fleurs_nl-run2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: audiofolder type: audiofolder config: default split: validation args: default metrics: - name: Wer type: wer value: 0.38678223185265437 --- # xls-r-fleurs_nl-run2 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the FLEURS (nl) dataset. It achieves the following results: - Wer (Validation): 38.05% - Wer (Test): 37.20% ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 7.4175 | 0.55 | 100 | 3.8140 | 1.0 | | 3.2001 | 1.1 | 200 | 2.9283 | 1.0 | | 2.9162 | 1.64 | 300 | 2.8922 | 1.0 | | 2.8398 | 2.19 | 400 | 2.3875 | 0.9756 | | 1.2121 | 2.74 | 500 | 0.8873 | 0.7050 | | 0.5833 | 3.29 | 600 | 0.6149 | 0.5276 | | 0.4103 | 3.84 | 700 | 0.5275 | 0.4575 | | 0.2901 | 4.38 | 800 | 0.5056 | 0.4510 | | 0.2584 | 4.93 | 900 | 0.5021 | 0.4363 | | 0.1929 | 5.48 | 1000 | 0.4881 | 0.4087 | | 0.1747 | 6.03 | 1100 | 0.4961 | 0.4209 | | 0.1469 | 6.58 | 1200 | 0.4893 | 0.3868 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.1+cu117 - Datasets 2.14.4 - Tokenizers 0.13.3