--- language: - pt license: apache-2.0 tags: - text-generation-inference - transformers - unsloth - mistral - gguf base_Model: unsloth/mistral-7b-instruct-v0.3-bnb-4bit --- # Boto 7B 1.2 - GGUF - Criador do Modelo: [Luciano Santa Brígida](https://lucianosb.com.br/) - Modelo Original: [Boto-7B v1.2](https://huggingface.co/lucianosb/boto-7B-v1.2) Boto-7B é um modelo de linguagem de 7 bilhões de parâmetros, otimizado a partir do Mistral-7B-intruct-v0.3. Confira os [presets](https://huggingface.co/lucianosb/boto-7B-GGUF/tree/main/presets) para usar com [LM Studio](https://lmstudio.ai/). ## Arquivos Incluídos | Nome | Método Quant | Bits | Tamanho | Desc | | ---- | ---- | ---- | ---- | ----- | | [boto-7B-v1.2-GGUF-unsloth.Q2_K.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q2_K.gguf) | q2_K | 2 | 2.72 GB | Quantização em 2-bit. Significativa perda de qualidade. Não-recomendado. | | [boto-7B-v1.2-GGUF-unsloth.Q3_K_M.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q3_K_M.gguf) | q3_K_M| 3 | 3.52 GB | Quantização em 3-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q3_K_S.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q3_K_S.gguf) | q3_K_S | 3 | 3.17 GB | Quantização em 3-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q4_0.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q4_0.gguf) | q4_0 | 4 | 4.11 GB | Quantização em 4-bit. Prefira usar o Q3_K_M| | [boto-7B-v1.2-GGUF-unsloth.Q4_K_S.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q4_K_S.gguf) | q4_K_S | 4 | 4.14 GB | Quantização em 4-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q3_K_L.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q3_K_L.gguf) | q3_K_L | 3 | 3.83 GB | Quantização em 3-bit com menor perda de qualidade. | | [boto-7B-v1.2-GGUF-unsloth.Q4_K_M.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q4_K_M.gguf) | q4_K_M | 4 | 4.37 GB | Quantização em 4-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q4_1.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q4_1.gguf) | q4_1 | 4 | 4.56 GB | Quantização em 4-bit. Acurácia maior que q4_0 mas não tão boa quanto q5_0. Inferência mais rápida que os modelos q5. | | [boto-7B-v1.2-GGUF-unsloth.Q5_0.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q5_0.gguf) | q5_0 | 5 | 5 GB | Quantização em 5-bit. Melhor acurácia, maior uso de recursos, inferência mais lenta. | | [boto-7B-v1.2-GGUF-unsloth.Q5_1.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q5_1.gguf) | q5_1 | 5 | 5.45 GB | Quantização em 5-bit. Ainda Melhor acurácia, maior uso de recursos, inferência mais lenta. | | [boto-7B-v1.2-GGUF-unsloth.Q5_K_M.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q5_K_M.gguf) | q5_K_M | 5 | 5.14 GB | Quantização em 5-bit. Melhor performance. Recomendado. | | [boto-7B-v1.2-GGUF-unsloth.Q5_K_S.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q5_K_S.gguf) | q5_K_S | 5 | 5 GB | Quantização em 5-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q6_K.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q6_K.gguf) | q6_K | 6 | 5.95 GB | Quantização em 6-bit. | | [boto-7B-v1.2-GGUF-unsloth.Q8_0.gguf](https://huggingface.co/lucianosb/boto-7B-v1.2-GGUF/blob/main/boto-7B-v1.2-GGUF-unsloth.Q8_0.gguf) | q8_0 | 8 | 7.7 GB | Quantização em 8-bit. Quase indistinguível do float16. Usa muitos recursos e é mais lento. | **Observação**: os valores de RAM acima não pressupõem descarregamento de GPU. Se as camadas forem descarregadas para a GPU, isso reduzirá o uso de RAM e usará VRAM. ## Template ```` ### Instrução: {prompt} ### Resposta: ```` # Uploaded model - **Developed by:** lucianosb - **License:** apache-2.0 - **Finetuned from model :** unsloth/mistral-7b-instruct-v0.3-bnb-4bit This mistral model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. [](https://github.com/unslothai/unsloth)