lucianosb commited on
Commit
edcf31f
1 Parent(s): 26b9ef4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +80 -0
README.md CHANGED
@@ -1,3 +1,83 @@
1
  ---
 
 
 
 
 
 
 
 
 
2
  license: llama2
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ inference: false
3
+ language:
4
+ - pt
5
+ model_creator: Maicon Domingues
6
+ model_link: https://huggingface.co/dominguesm/Canarim-7B-Instruct
7
+ model_name: Canarim 7B
8
+ model_type: llama
9
+ quantized_by: lucianosb
10
+ pipeline_tag: text-generation
11
  license: llama2
12
  ---
13
+
14
+ # Sabiá 7B - GGUF
15
+ - Criador do Modelo: [Maicon Domingues](https://nlp.rocks/)
16
+ - Modelo Original: [Canarim-7B-Instruct](https://huggingface.co/dominguesm/Canarim-7B-Instruct)
17
+
18
+ Canarim-7B-Instruct é um modelo de linguagem de 7 bilhões de parâmetros, inicializado a partir do modelo Canarim-7B e treinado em uma variedade de conjuntos de dados de instruções disponíveis publicamente.
19
+
20
+ ## Arquivos Incluídos
21
+
22
+ | Nome | Método Quant | Bits | Tamanho | Desc |
23
+ | ---- | ---- | ---- | ---- | ----- |
24
+ | [canarim7b-instruct-q2_k.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q2_k.gguf) | q2_K | 2 | 2.83 GB | Quantização em 2-bit. Significativa perda de qualidade. Não-recomendado. |
25
+ | [canarim7b-instruct-q3_k_m.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q3_k_m.gguf) | q3_K_M| 3 | 3.3 GB | Quantização em 3-bit. |
26
+ | [canarim7b-instruct-q3_k_s.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q3_k_s.gguf) | q3_K_S | 3 | 2.95 GB | Quantização em 3-bit. |
27
+ | [canarim7b-instruct-q4_0.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q4_0.gguf) | q4_0 | 4 | 3.83 GB | Quantização em 4-bit. Prefira usar o Q3_K_M|
28
+ | [canarim7b-instruct-q4_k_s.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q4_k_s.gguf) | q4_K_S | 4 | 3.86 GB | Quantização em 4-bit. |
29
+ | [canarim7b-instruct-q3_k_l.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q3_k_l.gguf) | q3_K_L | 3 | 3.6 GB | Quantização em 3-bit com menor perda de qualidade. |
30
+ | [canarim7b-instruct-q4_k_m.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q4_k_m.gguf) | q4_K_M | 4 | 4.08 GB | Quantização em 4-bit. |
31
+ | [canarim7b-instruct-q4_1.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q4_1.gguf) | q4_1 | 4 | 4.24 GB | Quantização em 4-bit. Acurácia maior que q4_0 mas não tão boa quanto q5_0. Inferência mais rápida que os modelos q5. |
32
+ | [canarim7b-instruct-q5_0.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q5_0.gguf) | q5_0 | 5 | 4.65 GB | Quantização em 5-bit. Melhor acurácia, maior uso de recursos, inferência mais lenta. |
33
+ | [canarim7b-instruct-q5_1.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q5_1.gguf) | q5_1 | 5 | 5.06 GB | Quantização em 5-bit. Ainda Melhor acurácia, maior uso de recursos, inferência mais lenta. |
34
+ | [canarim7b-instruct-q5_k_m.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q5_k_m.gguf) | q5_K_M | 5 | 4.78 GB | Quantização em 5-bit. Melhor performance. Recomendado. |
35
+ | [canarim7b-instruct-q5_k_s.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q5_k_s.gguf) | q5_K_S | 5 | 4.65 GB | Quantização em 5-bit. |
36
+ | [canarim7b-instruct-q6_k.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q6_k.gguf) | q6_K | 6 | 5.53 GB | Quantização em 6-bit. |
37
+ | [canarim7b-instruct-q8_0.gguf](https://huggingface.co/lucianosb/canarim-7B-instruct-GGUF/blob/main/canarim7b-instruct-q8_0.gguf) | q8_0 | 8 | 7.16 GB | Quantização em 8-bit. Quase indistinguível do float16. Usa muitos recursos e é mais lento. |
38
+
39
+ **Observação**: os valores de RAM acima não pressupõem descarregamento de GPU. Se as camadas forem descarregadas para a GPU, isso reduzirá o uso de RAM e usará VRAM.
40
+
41
+ ## Como executar com `llama.cpp`
42
+
43
+ Usei o seguinte comando. Para melhores resultados forneça exemplos de resultados esperados. Exemplo:
44
+
45
+ > Conte a história do Curupira
46
+
47
+ ```
48
+ ./main -m ./models/canarim-7B-instruct-GGUF/canarim7b-instruct-q5_k_m.gguf --color --temp 0.5 -n 256 -p "### Instruções: {comando} ### Resposta:"
49
+ ```
50
+
51
+ Para compreender os parâmetros, veja [a documentação do llama.cpp](https://github.com/ggerganov/llama.cpp/blob/master/examples/main/README.md)
52
+
53
+ Experimente gratuitamente no Google Colab: (em breve)
54
+
55
+ ## Sobre o formato GGUF
56
+
57
+ GGUF é um novo formato introduzido pela equipe llama.cpp em 21 de agosto de 2023. É um substituto para o GGML, que não é mais suportado pelo llama.cpp.
58
+
59
+ O principal benefício do GGUF é que ele é um formato extensível e à prova de futuro que armazena mais informações sobre o modelo como metadados. Ele também inclui código de tokenização significativamente melhorado, incluindo pela primeira vez suporte total para tokens especiais. Isso deve melhorar o desempenho, especialmente com modelos que usam novos tokens especiais e implementam modelos de prompt personalizados.
60
+
61
+ Aqui está uma lista de clientes e bibliotecas que são conhecidos por suportar GGUF:
62
+
63
+ - [llama.cpp](https://github.com/ggerganov/llama.cpp).
64
+ - [ollama](https://ollama.ai/) - servidor com interfaces REST e CLI
65
+ - [Faraday.dev](https://faraday.dev/) - App para Windows e Mac
66
+ - [lollms-webui](https://github.com/ParisNeo/lollms-webui) - Lord of Large Language Models Web User Interface
67
+ - [text-generation-webui](https://github.com/oobabooga/text-generation-webui), a interface web mais amplamente utilizada. Suporta GGUF com aceleração GPU via backend ctransformers - backend llama-cpp-python deve funcionar em breve também.
68
+ - [KoboldCpp](https://github.com/LostRuins/koboldcpp), agora suporta GGUF a partir da versão 1.41! Uma poderosa interface web GGML, com aceleração total da GPU. Especialmente bom para contar histórias.
69
+ - [LM Studio](https://lmstudio.ai), versão 0.2.2 e posteriores suportam GGUF. Uma GUI local totalmente equipada com aceleração GPU em ambos Windows (NVidia e AMD) e macOS.
70
+ - [LoLLMS Web UI](https://github.com/ParisNeo/lollms-webui), agora deve funcionar, escolha o backend c_transformers. Uma ótima interface web com muitos recursos interessantes. Suporta aceleração GPU CUDA.
71
+ - [ctransformers](https://github.com/marella/ctransformers), agora suporta GGUF a partir da versão 0.2.24! Uma biblioteca Python com aceleração GPU, suporte LangChain e servidor AI compatível com OpenAI.
72
+ - [llama-cpp-python](https://github.com/abetlen/llama-cpp-python), suporta GGUF a partir da versão 0.1.79. Uma biblioteca Python com aceleração GPU, suporte LangChain e servidor API compatível com OpenAI.
73
+ - [candle](https://github.com/huggingface/candle), adicionou suporte GGUF em 22 de agosto. Candle é um framework ML Rust com foco em desempenho, incluindo suporte GPU e facilidade de uso.
74
+ - [LocalAI](https://github.com/go-skynet/LocalAI), adicionou suporte GGUF em 23 de agosto. LocalAI provê uma API Rest para modelos LLM e de geração de imagens.
75
+
76
+ ## Template
77
+
78
+ ````
79
+ ### Instruções:
80
+ {prompt}
81
+
82
+ ### Resposta:
83
+ ````