luisarizmendi
commited on
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
task_categories:
|
3 |
+
- object-detection
|
4 |
+
tags:
|
5 |
+
- yolo
|
6 |
+
- yolo11
|
7 |
+
- hardhat
|
8 |
+
- hat
|
9 |
+
datasets:
|
10 |
+
- luisarizmendi/safety-equipment
|
11 |
+
base_model:
|
12 |
+
- Ultralytics/YOLO11
|
13 |
+
widget:
|
14 |
+
- src: >-
|
15 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/football-match.jpg
|
16 |
+
example_title: Football Match
|
17 |
+
- src: >-
|
18 |
+
https://huggingface.co/datasets/mishig/sample_images/resolve/main/airport.jpg
|
19 |
+
example_title: Airport
|
20 |
+
pipeline_tag: object-detection
|
21 |
+
model-index:
|
22 |
+
- name: yolo11-safety-equipment
|
23 |
+
results:
|
24 |
+
- task:
|
25 |
+
type: object-detection
|
26 |
+
dataset:
|
27 |
+
type: safety-equipment
|
28 |
+
name: Safety Equipment
|
29 |
+
args:
|
30 |
+
epochs: 35
|
31 |
+
batch: 2
|
32 |
+
imgsz: 640
|
33 |
+
patience: 5
|
34 |
+
optimizer: SGD
|
35 |
+
lr0: 0.001
|
36 |
+
lrf: 0.01
|
37 |
+
momentum: 0.9
|
38 |
+
weight_decay: 0.0005
|
39 |
+
warmup_epochs: 3
|
40 |
+
warmup_bias_lr: 0.01
|
41 |
+
warmup_momentum: 0.8
|
42 |
+
metrics:
|
43 |
+
- type: precision
|
44 |
+
name: Precision
|
45 |
+
value: 0.9078
|
46 |
+
- type: recall
|
47 |
+
name: Recall
|
48 |
+
value: 0.9064
|
49 |
+
- type: mAP50
|
50 |
+
name: mAP50
|
51 |
+
value: 0.9589
|
52 |
+
- type: mAP50-95
|
53 |
+
name: mAP50-95
|
54 |
+
value: 0.6088
|
55 |
+
---
|
56 |
+
|
57 |
+
# Model for detecting Hardhats and Hats
|
58 |
+
|
59 |
+
|
60 |
+
<div align="center">
|
61 |
+
<img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/hardhat-or-hat/resolve/main/example.png">
|
62 |
+
</div>
|
63 |
+
|
64 |
+
## Model binary
|
65 |
+
|
66 |
+
You can [download the model from here](https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detector-safety/object-detector-safety-v1.pt)
|
67 |
+
|
68 |
+
|
69 |
+
## Labels
|
70 |
+
|
71 |
+
```
|
72 |
+
- hat
|
73 |
+
- helmet
|
74 |
+
- no_helmet
|
75 |
+
```
|
76 |
+
|
77 |
+
|
78 |
+
## Model metrics
|
79 |
+
|
80 |
+
|
81 |
+
<div align="center">
|
82 |
+
<img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/confusion_matrix_normalized.png"> <img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/results.png">
|
83 |
+
</div>
|
84 |
+
|
85 |
+
|
86 |
+
## Model Dataset
|
87 |
+
|
88 |
+
[https://universe.roboflow.com/luisarizmendi/hardhat-or-hat](https://universe.roboflow.com/luisarizmendi/hardhat-or-hat)
|
89 |
+
|
90 |
+
|
91 |
+
|
92 |
+
## Model training
|
93 |
+
|
94 |
+
### Notebook
|
95 |
+
|
96 |
+
You can [review the Jupyter notebook here](https://huggingface.co/luisarizmendihardhat-or-hat/blob/main/train.ipynb)
|
97 |
+
|
98 |
+
### Hyperparameters
|
99 |
+
|
100 |
+
```
|
101 |
+
epochs: 35
|
102 |
+
batch: 2
|
103 |
+
imgsz: 640
|
104 |
+
patience: 5
|
105 |
+
optimizer: 'SGD'
|
106 |
+
lr0: 0.001
|
107 |
+
lrf: 0.01
|
108 |
+
momentum: 0.9
|
109 |
+
weight_decay: 0.0005
|
110 |
+
warmup_epochs: 3
|
111 |
+
warmup_bias_lr: 0.01
|
112 |
+
warmup_momentum: 0.8
|
113 |
+
```
|
114 |
+
|
115 |
+
### Augmentation
|
116 |
+
|
117 |
+
```
|
118 |
+
hsv_h=0.015, # Image HSV-Hue augmentationc
|
119 |
+
hsv_s=0.7, # Image HSV-Saturation augmentation
|
120 |
+
hsv_v=0.4, # Image HSV-Value augmentation
|
121 |
+
degrees=10, # Image rotation (+/- deg)
|
122 |
+
translate=0.1, # Image translation (+/- fraction)
|
123 |
+
scale=0.3, # Image scale (+/- gain)
|
124 |
+
shear=0.0, # Image shear (+/- deg)
|
125 |
+
perspective=0.0, # Image perspective
|
126 |
+
flipud=0.1, # Image flip up-down
|
127 |
+
fliplr=0.1, # Image flip left-right
|
128 |
+
mosaic=1.0, # Image mosaic
|
129 |
+
mixup=0.0, # Image mixup
|
130 |
+
```
|
131 |
+
|
132 |
+
|
133 |
+
## Usage
|
134 |
+
|
135 |
+
|
136 |
+
### Usage with Huggingface spaces
|
137 |
+
|
138 |
+
If you don't want to run it locally, you can use [this huggingface space](https://huggingface.co/spaces/luisarizmendi/safety-equipment-object-detection) that I've created with this code but be aware that this will be slow since I'm using a free instance, so it's better to run it locally with the python script below.
|
139 |
+
|
140 |
+
|
141 |
+
<div align="center">
|
142 |
+
<img width="640" alt="luisarizmendi/safety-equipment" src="https://huggingface.co/luisarizmendi/yolo11-safety-equipment/resolve/main/spaces-example.png">
|
143 |
+
</div>
|
144 |
+
|
145 |
+
|
146 |
+
### Usage with Python script
|
147 |
+
|
148 |
+
Install the following PIP requirements
|
149 |
+
|
150 |
+
```
|
151 |
+
gradio
|
152 |
+
ultralytics
|
153 |
+
Pillow
|
154 |
+
opencv-python
|
155 |
+
torch
|
156 |
+
```
|
157 |
+
|
158 |
+
Then [run the python code below](https://huggingface.co/luisarizmendi/yolo11-safety-equipment/blob/main/run_model.py) and then open `http://localhost:7860` in a browser to upload and scan the images.
|
159 |
+
|
160 |
+
```
|
161 |
+
import gradio as gr
|
162 |
+
from ultralytics import YOLO
|
163 |
+
from PIL import Image
|
164 |
+
import os
|
165 |
+
import cv2
|
166 |
+
import torch
|
167 |
+
|
168 |
+
def detect_objects_in_files(files):
|
169 |
+
"""
|
170 |
+
Processes uploaded images for object detection.
|
171 |
+
"""
|
172 |
+
if not files:
|
173 |
+
return "No files uploaded.", []
|
174 |
+
|
175 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
176 |
+
model = YOLO("https://github.com/luisarizmendi/ai-apps/raw/refs/heads/main/models/luisarizmendi/object-detector-safety/object-detector-safety-v1.pt")
|
177 |
+
model.to(device)
|
178 |
+
|
179 |
+
results_images = []
|
180 |
+
for file in files:
|
181 |
+
try:
|
182 |
+
image = Image.open(file).convert("RGB")
|
183 |
+
results = model(image)
|
184 |
+
result_img_bgr = results[0].plot()
|
185 |
+
result_img_rgb = cv2.cvtColor(result_img_bgr, cv2.COLOR_BGR2RGB)
|
186 |
+
results_images.append(result_img_rgb)
|
187 |
+
|
188 |
+
# If you want that images appear one by one (slower)
|
189 |
+
#yield "Processing image...", results_images
|
190 |
+
|
191 |
+
except Exception as e:
|
192 |
+
return f"Error processing file: {file}. Exception: {str(e)}", []
|
193 |
+
|
194 |
+
del model
|
195 |
+
torch.cuda.empty_cache()
|
196 |
+
|
197 |
+
return "Processing completed.", results_images
|
198 |
+
|
199 |
+
interface = gr.Interface(
|
200 |
+
fn=detect_objects_in_files,
|
201 |
+
inputs=gr.Files(file_types=["image"], label="Select Images"),
|
202 |
+
outputs=[
|
203 |
+
gr.Textbox(label="Status"),
|
204 |
+
gr.Gallery(label="Results")
|
205 |
+
],
|
206 |
+
title="Object Detection on Images",
|
207 |
+
description="Upload images to perform object detection. The model will process each image and display the results."
|
208 |
+
)
|
209 |
+
|
210 |
+
if __name__ == "__main__":
|
211 |
+
interface.launch()
|
212 |
+
```
|