--- library_name: transformers license: mit base_model: facebook/bart-large-xsum tags: - generated_from_trainer metrics: - rouge model-index: - name: bart-large-finetuned-billsum results: [] --- # bart-large-finetuned-billsum This model is a fine-tuned version of [facebook/bart-large-xsum](https://huggingface.co/facebook/bart-large-xsum) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1947 - Rouge1: 35.1575 - Rouge2: 27.7021 - Rougel: 32.9801 - Rougelsum: 33.6194 - Gen Len: 31.9873 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:------:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| | 1.5279 | 0.4221 | 1000 | 1.3638 | 34.2853 | 26.1627 | 31.897 | 32.6399 | 31.999 | | 1.3237 | 0.8442 | 2000 | 1.2357 | 34.7055 | 26.7936 | 32.3811 | 33.0823 | 31.9973 | | 1.1594 | 1.2664 | 3000 | 1.2246 | 34.6975 | 27.0964 | 32.5326 | 33.1883 | 31.982 | | 1.1029 | 1.6885 | 4000 | 1.2092 | 34.4969 | 26.9107 | 32.3644 | 33.0481 | 31.9987 | | 1.0461 | 2.1106 | 5000 | 1.1769 | 35.2419 | 27.6038 | 33.0339 | 33.6849 | 31.9903 | | 0.9535 | 2.5327 | 6000 | 1.1958 | 34.7138 | 27.2185 | 32.5573 | 33.2043 | 31.9947 | | 0.9373 | 2.9548 | 7000 | 1.1600 | 35.1741 | 27.6199 | 32.9618 | 33.6181 | 31.9783 | | 0.8506 | 3.3770 | 8000 | 1.1940 | 34.8976 | 27.4455 | 32.7581 | 33.4013 | 31.99 | | 0.8341 | 3.7991 | 9000 | 1.1716 | 35.1191 | 27.6856 | 32.9822 | 33.6221 | 31.9853 | | 0.8083 | 4.2212 | 10000 | 1.1916 | 35.1839 | 27.7013 | 32.995 | 33.6131 | 31.988 | | 0.7749 | 4.6433 | 11000 | 1.1947 | 35.1575 | 27.7021 | 32.9801 | 33.6194 | 31.9873 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.2.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1