--- library_name: transformers language: - en license: mit base_model: microsoft/deberta-base tags: - generated_from_trainer metrics: - accuracy model-index: - name: deberta-base-tweet-sentiment results: [] --- # deberta-base-tweet-sentiment This model is a fine-tuned version of [microsoft/deberta-base](https://huggingface.co/microsoft/deberta-base) on the Twitter Sentiment Datasets dataset. It achieves the following results on the evaluation set: - Loss: 0.4842 - Accuracy: 0.8019 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1.5e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.8569 | 0.9985 | 332 | 0.5507 | 0.7729 | | 0.5439 | 2.0 | 665 | 0.5021 | 0.7947 | | 0.4502 | 2.9985 | 997 | 0.4842 | 0.8019 | | 0.3801 | 4.0 | 1330 | 0.5064 | 0.8013 | | 0.3387 | 4.9925 | 1660 | 0.5141 | 0.8057 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1