File size: 2,011 Bytes
01c8307
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
language:
- en
license: apache-2.0
base_model: openai/whisper-tiny
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tiny

This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Personal - Mimic Recording dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3751
- Wer: 0.1311

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.5941        | 1.0   | 293  | 0.4660          | 0.2291 |
| 0.2868        | 2.0   | 586  | 0.4858          | 0.2960 |
| 0.1692        | 3.0   | 879  | 0.4274          | 0.2219 |
| 0.0971        | 4.0   | 1172 | 0.4568          | 0.2014 |
| 0.0562        | 5.0   | 1465 | 0.4665          | 0.1820 |
| 0.0291        | 6.0   | 1758 | 0.4346          | 0.1801 |
| 0.0124        | 7.0   | 2051 | 0.3950          | 0.1456 |
| 0.0024        | 8.0   | 2344 | 0.3777          | 0.1359 |
| 0.0006        | 9.0   | 2637 | 0.3756          | 0.1323 |
| 0.0002        | 10.0  | 2930 | 0.3751          | 0.1311 |


### Framework versions

- Transformers 4.45.1
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.0