simpletuner-lora

This is a standard PEFT LoRA derived from stabilityai/stable-diffusion-3.5-large.

The main validation prompt used during training was:

your main test prompt here

Validation settings

  • CFG: 3.0
  • CFG Rescale: 0.0
  • Steps: 20
  • Sampler: None
  • Seed: 42
  • Resolution: 512x512

Note: The validation settings are not necessarily the same as the training settings.

You can find some example images in the following gallery:

Prompt
unconditional (blank prompt)
Negative Prompt
blurry, cropped, ugly
Prompt
your prompt to validate on
Negative Prompt
blurry, cropped, ugly
Prompt
another prompt to validate on
Negative Prompt
blurry, cropped, ugly
Prompt
your main test prompt here
Negative Prompt
blurry, cropped, ugly

The text encoder was not trained. You may reuse the base model text encoder for inference.

Training settings

  • Training epochs: 2
  • Training steps: 10000
  • Learning rate: 0.0001
  • Max grad norm: 0.01
  • Effective batch size: 8
    • Micro-batch size: 1
    • Gradient accumulation steps: 1
    • Number of GPUs: 8
  • Prediction type: flow-matching
  • Rescaled betas zero SNR: False
  • Optimizer: adamw_bf16
  • Precision: Pure BF16
  • Quantised: No
  • Xformers: Not used
  • LoRA Rank: 16
  • LoRA Alpha: None
  • LoRA Dropout: 0.1
  • LoRA initialisation style: default

Datasets

richhf_18k

  • Repeats: 1
  • Total number of images: ~15816
  • Total number of aspect buckets: 1
  • Resolution: 512 px
  • Cropped: False
  • Crop style: None
  • Crop aspect: None
  • Used for regularisation data: No

Inference

import torch
from diffusers import DiffusionPipeline

model_id = 'stabilityai/stable-diffusion-3.5-large'
adapter_id = 'luoyan227/simpletuner-lora'
pipeline = DiffusionPipeline.from_pretrained(model_id)
pipeline.load_lora_weights(adapter_id)

prompt = "your main test prompt here"
negative_prompt = 'blurry, cropped, ugly'
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu')
image = pipeline(
    prompt=prompt,
    negative_prompt=negative_prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826),
    width=512,
    height=512,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
Downloads last month
0
Inference API
Examples

Model tree for luoyan227/simpletuner-lora

Adapter
(217)
this model