m3hrdadfi commited on
Commit
b9bfdc9
1 Parent(s): aca6cef

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +106 -0
README.md CHANGED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: fa
3
+ datasets:
4
+ - ShEMO
5
+ tags:
6
+ - audio
7
+ - automatic-speech-recognition
8
+ - speech
9
+ - speech-emotion-recognition
10
+ license: apache-2.0
11
+ ---
12
+
13
+ # Emotion Recognition in Persian (Farsi - fa) Speech using Wav2Vec 2.0
14
+
15
+
16
+ ## How to use
17
+
18
+ ### Requirements
19
+
20
+ ```bash
21
+ # requirement packages
22
+ !pip install git+https://github.com/huggingface/datasets.git
23
+ !pip install git+https://github.com/huggingface/transformers.git
24
+ !pip install torchaudio
25
+ !pip install librosa
26
+ ```
27
+
28
+ ### Prediction
29
+
30
+ ```python
31
+ import torch
32
+ import torch.nn as nn
33
+ import torch.nn.functional as F
34
+ import torchaudio
35
+ from transformers import AutoConfig, Wav2Vec2FeatureExtractor
36
+
37
+ import librosa
38
+ import IPython.display as ipd
39
+ import numpy as np
40
+ import pandas as pd
41
+ ```
42
+
43
+ ```python
44
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
45
+ model_name_or_path = "m3hrdadfi/wav2vec2-xlsr-persian-speech-emotion-recognition"
46
+ config = AutoConfig.from_pretrained(model_name_or_path)
47
+ feature_extractor = Wav2Vec2FeatureExtractor.from_pretrained(model_name_or_path)
48
+ sampling_rate = feature_extractor.sampling_rate
49
+ model = Wav2Vec2ForSpeechClassification.from_pretrained(model_name_or_path).to(device)
50
+ ```
51
+
52
+ ```python
53
+ def speech_file_to_array_fn(path, sampling_rate):
54
+ speech_array, _sampling_rate = torchaudio.load(path)
55
+ resampler = torchaudio.transforms.Resample(_sampling_rate)
56
+ speech = resampler(speech_array).squeeze().numpy()
57
+ return speech
58
+
59
+
60
+ def predict(path, sampling_rate):
61
+ speech = speech_file_to_array_fn(path, sampling_rate)
62
+ inputs = feature_extractor(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
63
+ inputs = {key: inputs[key].to(device) for key in inputs}
64
+
65
+ with torch.no_grad():
66
+ logits = model(**inputs).logits
67
+
68
+ scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
69
+ outputs = [{"Emotion": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
70
+ return outputs
71
+ ```
72
+
73
+ ```python
74
+ path = "/path/to/sadness.wav"
75
+ outputs = predict(path, sampling_rate)
76
+ ```
77
+
78
+ ```bash
79
+ [
80
+ {'Label': 'Anger', 'Score': '0.0%'},
81
+ {'Label': 'Fear', 'Score': '0.0%'},
82
+ {'Label': 'Happiness', 'Score': '0.0%'},
83
+ {'Label': 'Neutral', 'Score': '0.0%'},
84
+ {'Label': 'Sadness', 'Score': '99.9%'},
85
+ {'Label': 'Surprise', 'Score': '0.0%'}
86
+ ]
87
+ ```
88
+
89
+
90
+ ## Evaluation
91
+ The following tables summarize the scores obtained by model overall and per each class.
92
+
93
+
94
+ | Emotions | precision | recall | f1-score | accuracy |
95
+ |:---------:|:---------:|:------:|:--------:|:--------:|
96
+ | Anger | 0.95 | 0.95 | 0.95 | |
97
+ | Fear | 0.33 | 0.17 | 0.22 | |
98
+ | Happiness | 0.69 | 0.69 | 0.69 | |
99
+ | Neutral | 0.91 | 0.94 | 0.93 | |
100
+ | Sadness | 0.92 | 0.85 | 0.88 | |
101
+ | Surprise | 0.81 | 0.88 | 0.84 | |
102
+ | | | | Overal | 0.90 |
103
+
104
+
105
+ ## Questions?
106
+ Post a Github issue from [HERE](https://github.com/m3hrdadfi/soxan/issues).