--- license: apache-2.0 base_model: mHossain/ml_sum_v1 tags: - generated_from_trainer metrics: - rouge model-index: - name: ml_sum_v2 results: [] --- # ml_sum_v2 This model is a fine-tuned version of [mHossain/ml_sum_v1](https://huggingface.co/mHossain/ml_sum_v1) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9401 - Rouge1: 8.1448 - Rouge2: 3.3615 - Rougel: 7.4641 - Rougelsum: 7.9361 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 312 | 2.1706 | 7.2919 | 2.8117 | 6.7418 | 7.1173 | 19.0 | | 2.4911 | 2.0 | 625 | 2.1012 | 7.7986 | 3.0952 | 7.1505 | 7.5818 | 19.0 | | 2.4911 | 3.0 | 937 | 2.0373 | 8.0535 | 3.2228 | 7.3877 | 7.8365 | 19.0 | | 2.3572 | 4.0 | 1250 | 1.9865 | 8.1591 | 3.31 | 7.4577 | 7.9114 | 19.0 | | 2.2455 | 4.99 | 1560 | 1.9401 | 8.1448 | 3.3615 | 7.4641 | 7.9361 | 19.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2