--- license: apache-2.0 base_model: mHossain/ml_sum_v2 tags: - generated_from_trainer metrics: - rouge model-index: - name: ml_sum_v3 results: [] --- # ml_sum_v3 This model is a fine-tuned version of [mHossain/ml_sum_v2](https://huggingface.co/mHossain/ml_sum_v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: nan - Rouge1: 0.0 - Rouge2: 0.0 - Rougel: 0.0 - Rougelsum: 0.0 - Gen Len: 0.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 5000 - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 312 | 0.3728 | 0.0844 | 0.0536 | 0.0844 | 0.0844 | 19.0 | | 0.4276 | 2.0 | 625 | 0.3728 | 0.0844 | 0.0536 | 0.0844 | 0.0844 | 19.0 | | 0.4276 | 3.0 | 937 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 0.7627 | 3.99 | 1248 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2