--- license: apache-2.0 base_model: distilbert/distilgpt2 tags: - generated_from_trainer metrics: - bleu model-index: - name: distilgpt2-finetuned results: [] --- # distilgpt2-finetuned This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 3.8114 - Bleu: 0.0101 - Bertscore Precision: 0.1499 - Bertscore Recall: 0.1656 - Bertscore F1: 0.1571 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------------------:|:----------------:|:------------:| | 4.1924 | 1.0 | 644 | 4.0681 | 0.0091 | 0.1493 | 0.1649 | 0.1564 | | 4.0754 | 2.0 | 1288 | 3.8779 | 0.0099 | 0.1498 | 0.1654 | 0.1569 | | 3.8277 | 3.0 | 1932 | 3.8114 | 0.0101 | 0.1499 | 0.1656 | 0.1571 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1