--- license: apache-2.0 base_model: distilbert/distilgpt2 tags: - generated_from_trainer metrics: - bleu model-index: - name: distilgpt2-finetuned results: [] --- # distilgpt2-finetuned This model is a fine-tuned version of [distilbert/distilgpt2](https://huggingface.co/distilbert/distilgpt2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 4.0665 - Bleu: 0.0085 - Bertscore Precision: 0.1478 - Bertscore Recall: 0.1636 - Bertscore F1: 0.1550 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 1 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Bertscore Precision | Bertscore Recall | Bertscore F1 | |:-------------:|:-----:|:----:|:---------------:|:------:|:-------------------:|:----------------:|:------------:| | 5.0162 | 1.0 | 3223 | 4.0665 | 0.0085 | 0.1478 | 0.1636 | 0.1550 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1