File size: 15,085 Bytes
4aee22c 47f08ef 4174a6f 4aee22c 47f08ef dbddb2d 1af4cf8 47f08ef dbddb2d 47f08ef 629b7cd 65b5722 dbddb2d 543c7da dbddb2d 0c6f83e dbddb2d 0ece180 1d48e74 37c900b 1d48e74 664de93 9338c8b 269a2cb 4f18b13 269a2cb a75d8a6 1d48e74 38bcb59 1d48e74 38bcb59 1d48e74 38bcb59 fa411bf a75d8a6 e4909bc 47f08ef 95a55ce 2a74d95 95a55ce 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 1ed3a5f 2a74d95 3fdc94e 2a74d95 95a55ce 2a74d95 95a55ce 47f08ef 8242848 47f08ef 4b1448b 35fe3bb 4b1448b 35fe3bb 4b1448b 35fe3bb 4b1448b 811cd8e 8242848 570dbca d1aab33 2a9557b d1aab33 2a9557b d1aab33 2a9557b 4adf5b4 2a9557b d1aab33 4adf5b4 d1aab33 2a9557b d1aab33 2a9557b d1aab33 2a9557b 47f08ef 4174a6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
---
license: apache-2.0
library_name: transformers
model-index:
- name: laser-dolphin-mixtral-2x7b-dpo
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: AI2 Reasoning Challenge (25-Shot)
type: ai2_arc
config: ARC-Challenge
split: test
args:
num_few_shot: 25
metrics:
- type: acc_norm
value: 65.96
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: HellaSwag (10-Shot)
type: hellaswag
split: validation
args:
num_few_shot: 10
metrics:
- type: acc_norm
value: 85.8
name: normalized accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU (5-Shot)
type: cais/mmlu
config: all
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 63.17
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: TruthfulQA (0-shot)
type: truthful_qa
config: multiple_choice
split: validation
args:
num_few_shot: 0
metrics:
- type: mc2
value: 60.76
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: Winogrande (5-shot)
type: winogrande
config: winogrande_xl
split: validation
args:
num_few_shot: 5
metrics:
- type: acc
value: 79.01
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GSM8k (5-shot)
type: gsm8k
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 48.29
name: accuracy
source:
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=macadeliccc/laser-dolphin-mixtral-2x7b-dpo
name: Open LLM Leaderboard
---
# Laser-Dolphin-Mixtral-2x7b-dpo
![laser_dolphin_image](./dolphin_moe.png)
**New Version out now!**
Credit to Fernando Fernandes and Eric Hartford for their project [laserRMT](https://github.com/cognitivecomputations/laserRMT)
## Overview
This model is a medium-sized MoE implementation based on [cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser](https://huggingface.co/cognitivecomputations/dolphin-2.6-mistral-7b-dpo-laser)
+ The new version shows ~1 point increase in evaluation performance on average.
## Process
+ The process is outlined in this [notebook](https://github.com/cognitivecomputations/laserRMT/blob/main/examples/laser-dolphin-mixtral-2x7b.ipynb)
+ The mergekit_config is in the files.
+ The models used in the configuration are not lasered, but the final product is. This is an update from the last version.
+ This process is experimental. Your mileage may vary.
## Future Goals
+ [ ] Function Calling
+ [ ] v2 with new base model to improve performance
## Quantizations
### ExLlamav2
_These are the recommended quantizations for users that are running the model on GPU_
Thanks to user [bartowski](https://huggingface.co/bartowski) we now have exllamav2 quantizations in 3.5 through 8 bpw. They are available here:
+ [bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2)
| Branch | Bits | lm_head bits | VRAM (4k) | VRAM (16k) | VRAM (32k) | Description |
| ----- | ---- | ------- | ------ | ------ | ------ | ------------ |
| [8_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/8_0) | 8.0 | 8.0 | 13.7 GB | 15.1 GB | 17.2 GB | Maximum quality that ExLlamaV2 can produce, near unquantized performance. |
| [6_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/6_5) | 6.5 | 8.0 | 11.5 GB | 12.9 GB | 15.0 GB | Near unquantized performance at vastly reduced size, **recommended**. |
| [5_0](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/5_0) | 5.0 | 6.0 | 9.3 GB | 10.7 GB | 12.8 GB | Slightly lower quality vs 6.5, great for 12gb cards with 16k context. |
| [4_25](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/4_25) | 4.25 | 6.0 | 8.2 GB | 9.6 GB | 11.7 GB | GPTQ equivalent bits per weight. |
| [3_5](https://huggingface.co/bartowski/laser-dolphin-mixtral-2x7b-dpo-exl2/tree/3_5) | 3.5 | 6.0 | 7.0 GB | 8.4 GB | 10.5 GB | Lower quality, not recommended. |
His quantizations represent the first ~13B model with GQA support. Check out his repo for more information!
### GGUF
*Current GGUF [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF)*
### AWQ
*Current AWQ [Quantizations](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo-AWQ)
### TheBloke
**These Quants will result in unpredicted behavior. New quants are available as I have updated the model**
Quatizations provided by [TheBloke](https://huggingface.co/TheBloke/laser-dolphin-mixtral-2x7b-dpo-GGUF)
## HF Spaces
+ GGUF chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat-GGUF)
+ 4-bit bnb chat available [here](https://huggingface.co/spaces/macadeliccc/laser-dolphin-mixtral-chat)
# Ollama
```bash
ollama run macadeliccc/laser-dolphin-mixtral-2x7b-dpo
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6455cc8d679315e4ef16fbec/oVwa7Dwkt00tk8_MtlJdR.png)
## Code Example
Switch the commented model definition to use in 4-bit. Should work with 9GB and still exceed the single 7B model by 5-6 points roughly
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
def generate_response(prompt):
"""
Generate a response from the model based on the input prompt.
Args:
prompt (str): Prompt for the model.
Returns:
str: The generated response from the model.
"""
# Tokenize the input prompt
inputs = tokenizer(prompt, return_tensors="pt")
# Generate output tokens
outputs = model.generate(**inputs, max_new_tokens=256, eos_token_id=tokenizer.eos_token_id, pad_token_id=tokenizer.pad_token_id)
# Decode the generated tokens to a string
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response
# Load the model and tokenizer
model_id = "macadeliccc/laser-dolphin-mixtral-2x7b-dpo"
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)
prompt = "Write a quicksort algorithm in python"
# Generate and print responses for each language
print("Response:")
print(generate_response(prompt), "\n")
```
[colab](https://colab.research.google.com/drive/1cmRhAkDWItV7utHNqNANVZnqDqQNsTUr?usp=sharing) with usage example
## Eval
## EQ Bench
<pre>----Benchmark Complete----
2024-01-31 16:55:37
Time taken: 31.1 mins
Prompt Format: ChatML
Model: macadeliccc/laser-dolphin-mixtral-2x7b-dpo-GGUF
Score (v2): 72.76
Parseable: 171.0
---------------
Batch completed
Time taken: 31.2 mins
---------------
</pre>
evaluation [colab](https://colab.research.google.com/drive/1FpwgsGzCR4tORTxAwUxpN3PcP22En2xk?usp=sharing)
## Summary of previous evaluation
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 41.31| 73.67| 61.69| 42.79| 54.87|
## Detailed current evaluation
| Model |AGIEval|GPT4All|TruthfulQA|Bigbench|Average|
|---------------------------------------------------------------------------------------------------|------:|------:|---------:|-------:|------:|
|[laser-dolphin-mixtral-2x7b-dpo](https://huggingface.co/macadeliccc/laser-dolphin-mixtral-2x7b-dpo)| 42.25| 73.45| 63.44| 43.96| 55.77|
### AGIEval
| Task |Version| Metric |Value| |Stderr|
|------------------------------|------:|--------|----:|---|-----:|
|agieval_aqua_rat | 0|acc |21.26|± | 2.57|
| | |acc_norm|21.65|± | 2.59|
|agieval_logiqa_en | 0|acc |34.72|± | 1.87|
| | |acc_norm|35.64|± | 1.88|
|agieval_lsat_ar | 0|acc |26.96|± | 2.93|
| | |acc_norm|26.96|± | 2.93|
|agieval_lsat_lr | 0|acc |45.88|± | 2.21|
| | |acc_norm|46.08|± | 2.21|
|agieval_lsat_rc | 0|acc |59.48|± | 3.00|
| | |acc_norm|59.48|± | 3.00|
|agieval_sat_en | 0|acc |73.79|± | 3.07|
| | |acc_norm|73.79|± | 3.07|
|agieval_sat_en_without_passage| 0|acc |42.23|± | 3.45|
| | |acc_norm|41.26|± | 3.44|
|agieval_sat_math | 0|acc |37.27|± | 3.27|
| | |acc_norm|33.18|± | 3.18|
Average: 42.25%
### GPT4All
| Task |Version| Metric |Value| |Stderr|
|-------------|------:|--------|----:|---|-----:|
|arc_challenge| 0|acc |58.36|± | 1.44|
| | |acc_norm|58.02|± | 1.44|
|arc_easy | 0|acc |82.20|± | 0.78|
| | |acc_norm|77.40|± | 0.86|
|boolq | 1|acc |87.52|± | 0.58|
|hellaswag | 0|acc |67.50|± | 0.47|
| | |acc_norm|84.43|± | 0.36|
|openbookqa | 0|acc |34.40|± | 2.13|
| | |acc_norm|47.00|± | 2.23|
|piqa | 0|acc |81.61|± | 0.90|
| | |acc_norm|82.59|± | 0.88|
|winogrande | 0|acc |77.19|± | 1.18|
Average: 73.45%
### GSM8K
|Task |Version| Metric |Value| |Stderr|
|-----|------:|-----------------------------|-----|---|------|
|gsm8k| 2|exact_match,get-answer | 0.75| | |
| | |exact_match_stderr,get-answer| 0.01| | |
| | |alias |gsm8k| | |
### TruthfulQA
| Task |Version|Metric|Value| |Stderr|
|-------------|------:|------|----:|---|-----:|
|truthfulqa_mc| 1|mc1 |45.90|± | 1.74|
| | |mc2 |63.44|± | 1.56|
Average: 63.44%
### Bigbench
| Task |Version| Metric |Value| |Stderr|
|------------------------------------------------|------:|---------------------|----:|---|-----:|
|bigbench_causal_judgement | 0|multiple_choice_grade|58.42|± | 3.59|
|bigbench_date_understanding | 0|multiple_choice_grade|60.70|± | 2.55|
|bigbench_disambiguation_qa | 0|multiple_choice_grade|38.37|± | 3.03|
|bigbench_geometric_shapes | 0|multiple_choice_grade|21.73|± | 2.18|
| | |exact_str_match | 0.00|± | 0.00|
|bigbench_logical_deduction_five_objects | 0|multiple_choice_grade|35.00|± | 2.14|
|bigbench_logical_deduction_seven_objects | 0|multiple_choice_grade|23.57|± | 1.61|
|bigbench_logical_deduction_three_objects | 0|multiple_choice_grade|50.33|± | 2.89|
|bigbench_movie_recommendation | 0|multiple_choice_grade|45.00|± | 2.23|
|bigbench_navigate | 0|multiple_choice_grade|50.00|± | 1.58|
|bigbench_reasoning_about_colored_objects | 0|multiple_choice_grade|60.35|± | 1.09|
|bigbench_ruin_names | 0|multiple_choice_grade|51.12|± | 2.36|
|bigbench_salient_translation_error_detection | 0|multiple_choice_grade|32.26|± | 1.48|
|bigbench_snarks | 0|multiple_choice_grade|67.96|± | 3.48|
|bigbench_sports_understanding | 0|multiple_choice_grade|70.59|± | 1.45|
|bigbench_temporal_sequences | 0|multiple_choice_grade|35.80|± | 1.52|
|bigbench_tracking_shuffled_objects_five_objects | 0|multiple_choice_grade|22.56|± | 1.18|
|bigbench_tracking_shuffled_objects_seven_objects| 0|multiple_choice_grade|17.20|± | 0.90|
|bigbench_tracking_shuffled_objects_three_objects| 0|multiple_choice_grade|50.33|± | 2.89|
Average: 43.96%
Average score: 55.77%
Elapsed time: 02:43:45
## Citations
Fernando Fernandes Neto and Eric Hartford. "Optimizing Large Language Models Using Layer-Selective Rank Reduction and Random Matrix Theory." 2024.
```bibtex
@article{sharma2023truth,
title={The Truth is in There: Improving Reasoning in Language Models with Layer-Selective Rank Reduction},
author={Sharma, Pratyusha and Ash, Jordan T and Misra, Dipendra},
journal={arXiv preprint arXiv:2312.13558},
year={2023} }
```
```bibtex
@article{gao2021framework,
title={A framework for few-shot language model evaluation},
author={Gao, Leo and Tow, Jonathan and Biderman, Stella and Black, Sid and DiPofi, Anthony and Foster, Charles and Golding, Laurence and Hsu, Jeffrey and McDonell, Kyle and Muennighoff, Niklas and others},
journal={Version v0. 0.1. Sept},
year={2021}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_macadeliccc__laser-dolphin-mixtral-2x7b-dpo)
| Metric |Value|
|---------------------------------|----:|
|Avg. |67.16|
|AI2 Reasoning Challenge (25-Shot)|65.96|
|HellaSwag (10-Shot) |85.80|
|MMLU (5-Shot) |63.17|
|TruthfulQA (0-shot) |60.76|
|Winogrande (5-shot) |79.01|
|GSM8k (5-shot) |48.29|
|