File size: 2,241 Bytes
6250df4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0609
- Rouge1: 35.0709
- Rouge2: 16.7086
- Rougel: 34.3217
- Rougelsum: 34.3182

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rouge1  | Rouge2  | Rougel  | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log        | 1.0   | 1209 | 3.3452          | 28.1494 | 11.5385 | 27.8138 | 27.9215   |
| 5.3779        | 2.0   | 2418 | 3.2066          | 29.2799 | 14.9292 | 28.3282 | 28.4643   |
| 5.3779        | 3.0   | 3627 | 3.1105          | 31.9146 | 15.8212 | 31.0157 | 30.9702   |
| 3.5145        | 4.0   | 4836 | 3.0808          | 32.6703 | 15.9624 | 31.568  | 31.5303   |
| 3.5145        | 5.0   | 6045 | 3.0837          | 33.8454 | 16.3402 | 32.6727 | 32.8738   |
| 3.2939        | 6.0   | 7254 | 3.0655          | 32.4588 | 15.713  | 31.7059 | 31.7646   |
| 3.2939        | 7.0   | 8463 | 3.0576          | 34.764  | 16.6023 | 34.1524 | 34.0333   |
| 3.2076        | 8.0   | 9672 | 3.0609          | 35.0709 | 16.7086 | 34.3217 | 34.3182   |


### Framework versions

- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3