File size: 2,241 Bytes
6250df4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
license: apache-2.0
base_model: google/mt5-small
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: mt5-small-finetuned-amazon-en-es
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mt5-small-finetuned-amazon-en-es
This model is a fine-tuned version of [google/mt5-small](https://huggingface.co/google/mt5-small) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 3.0609
- Rouge1: 35.0709
- Rouge2: 16.7086
- Rougel: 34.3217
- Rougelsum: 34.3182
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|
| No log | 1.0 | 1209 | 3.3452 | 28.1494 | 11.5385 | 27.8138 | 27.9215 |
| 5.3779 | 2.0 | 2418 | 3.2066 | 29.2799 | 14.9292 | 28.3282 | 28.4643 |
| 5.3779 | 3.0 | 3627 | 3.1105 | 31.9146 | 15.8212 | 31.0157 | 30.9702 |
| 3.5145 | 4.0 | 4836 | 3.0808 | 32.6703 | 15.9624 | 31.568 | 31.5303 |
| 3.5145 | 5.0 | 6045 | 3.0837 | 33.8454 | 16.3402 | 32.6727 | 32.8738 |
| 3.2939 | 6.0 | 7254 | 3.0655 | 32.4588 | 15.713 | 31.7059 | 31.7646 |
| 3.2939 | 7.0 | 8463 | 3.0576 | 34.764 | 16.6023 | 34.1524 | 34.0333 |
| 3.2076 | 8.0 | 9672 | 3.0609 | 35.0709 | 16.7086 | 34.3217 | 34.3182 |
### Framework versions
- Transformers 4.31.0
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
|