mahmoud-mohey commited on
Commit
ff30af9
·
1 Parent(s): f5ef3e3

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1598.61 +/- 76.07
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:45d16df86ed87f079b7f5339b11bd029a3764b336e2404333aae8bacbc8dd62e
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ec9c38d30>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ec9c38dc0>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ec9c38e50>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ec9c38ee0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0ec9c38f70>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f0ec9c3c040>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ec9c3c0d0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ec9c3c160>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0ec9c3c1f0>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ec9c3c280>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ec9c3c310>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ec9c3c3a0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0ec9c34900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1675025522574299854,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFmmqL7BZic/Ma23PmQrIT/VHmU/okXxPdKmJz0fdhG/g5gNP3+YnT/zHcM+Gnu5Pq9PJD5qgBK/CSskP3Xfnj3xpIU/exGavkOwlT4LGWY/PiQ/vtIasD9Xre2+pjE4v7zMeT/Puhg/hRbOPtgWjb9+0GC+SqBwPzQ3DD5E2qQ+MgwmQJOhgr+em4q+2/VGvo32PD/a5PC+VDhBv3fxGD+vGNI/vJbzPpOFLj9PI+08wJCUP9v56z1EXly+/oPRPtadDz9U8Hw/HbEEP/R6Lb9VLYO/z7oYP4UWzj4MQGg/yD2ePqg/xr6WhQk/tVa4P7IzOzzQxbE+mqB8Ppd4jL93skk/mXGbPw3ZiD/YXYa/hxkVvw6IkT/eZ7C9voMIPmA3tT5HjBM/8KkyPzyMBr9qpDi+IHTsPnFoL782t4M+vMx5P8+6GD+FFs4+2BaNv5lihD+FTkI/jw6TPneD3z+aCv2+6Z6PPxsbtb6aCZK/C/yEP8/seL9c9YI/1a6BPn9fhr/ONgI/Dn6kvnRBDj8GsHU93AyUv5OVp73DPAk/rw3iPtRJob3lfzy/M7VSP7zMeT+GjNa/hRbOPtgWjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACRrMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQqmRPQAAAAB9CvS/AAAAAN3Qsz0AAAAAg1TsPwAAAAAtPcy9AAAAAI7I9j8AAAAA2ASkvAAAAADpfuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCT1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDmDz0AAAAAIGf0vwAAAAABWIc9AAAAAJdi9z8AAAAAjAivvQAAAADExfY/AAAAAEdgtDwAAAAARcX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIBmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvqXQ9AAAAAHi1AMAAAAAAQx4BvgAAAAA0utk/AAAAAPKotzsAAAAAGx/gPwAAAADsMs08AAAAAECv978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAGo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5KkjvAAAAAAxhv6/AAAAACVBmT0AAAAADYXiPwAAAACIcg4+AAAAACHm7z8AAAAAr9GNPQAAAABp3e+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiWFWHUMG6MAWyUTegDjAF0lEdAp2B/7k4m1XV9lChoBkdAlIc29lEqlWgHTegDaAhHQKdh5in5zo51fZQoaAZHQJe7bUy57PZoB03oA2gIR0CnYsKPXCj2dX2UKGgGR0CZYGpHqeK9aAdN6ANoCEdAp2qXS6UaAHV9lChoBkdAk4Ey6lLvkWgHTegDaAhHQKdsflWfbsZ1fZQoaAZHQJSw2DYh+v1oB03oA2gIR0CnbfOUD+zddX2UKGgGR0CQIbnIyTIOaAdN6ANoCEdAp27MXN1QqXV9lChoBkdAkeF4zSCvo2gHTegDaAhHQKd2oAjps411fZQoaAZHQJgaLH+6y0NoB03oA2gIR0CneH2KVII4dX2UKGgGR0CUpf7vXsgMaAdN6ANoCEdAp3n29zwMIHV9lChoBkdAkx85Grjo6mgHTegDaAhHQKd61KW9lEt1fZQoaAZHQJXdLdFfAsVoB03oA2gIR0CngqCsfaHsdX2UKGgGR0CDYER02cawaAdN6ANoCEdAp4SN3IMjNnV9lChoBkdAlSknQ6ZH/mgHTegDaAhHQKeGAznA6+51fZQoaAZHQJS+qFQEZBNoB03oA2gIR0CnhtiR4hUzdX2UKGgGR0CXKxEQoTf0aAdN6ANoCEdAp46FmrbQC3V9lChoBkdAmRDUZR8+imgHTegDaAhHQKeQaCTUy591fZQoaAZHQJhGd/qgRK9oB03oA2gIR0Cnkd3gccU/dX2UKGgGR0CWEsAxBVuKaAdN6ANoCEdAp5K1ZNfw7XV9lChoBkdAl3oA1zhgmmgHTegDaAhHQKeaWjmjj711fZQoaAZHQJHsYEmplz5oB01sA2gIR0CnnCs5OrQxdX2UKGgGR0Cb4QA/s3Q2aAdN6ANoCEdAp5wv/1g6VHV9lChoBkdAmeFYOhCdBmgHTegDaAhHQKeefUlzEJl1fZQoaAZHQJFkS/vfCQ9oB03oA2gIR0Cnpi25xzaLdX2UKGgGR0CWIEjYZl4DaAdN6ANoCEdAp6gHrGBFu3V9lChoBkdAkUKz6SDAamgHTegDaAhHQKeoDRjz7Mx1fZQoaAZHQJvjG5nUUfxoB03oA2gIR0CnqmHf2saLdX2UKGgGR0CTNmlMRHwxaAdN6ANoCEdAp7IZHTZxrHV9lChoBkdAmdit8Aq/d2gHTegDaAhHQKez7XEIgNh1fZQoaAZHQJpjrrpqynloB03oA2gIR0Cns/KL0jC6dX2UKGgGR0CW9mj3mFJyaAdN6ANoCEdAp7ZBUFSsKnV9lChoBkdAlJ17aM72c2gHTegDaAhHQKe+Chpxm051fZQoaAZHQJTZuEbo8p1oB03oA2gIR0Cnv+D7IkqudX2UKGgGR0CUE0GvwEyMaAdN6ANoCEdAp7/mCwr1/XV9lChoBkdAii5RtpEhJWgHTegDaAhHQKfCLdTo+wF1fZQoaAZHQJf0hARkEs9oB03oA2gIR0CnyluUD+zddX2UKGgGR0CS5aj/dZaFaAdN6ANoCEdAp8xRhpg1FnV9lChoBkdAmDCgpBomHGgHTegDaAhHQKfMVrBTGYN1fZQoaAZHQJoLyHtWuHNoB03oA2gIR0Cnzug7xNItdX2UKGgGR0CWlWGaQV9GaAdN6ANoCEdAp9cJDNQj2XV9lChoBkdAkx+jawljVmgHTegDaAhHQKfY8YKIBR11fZQoaAZHQJeVUf+0gKZoB03oA2gIR0Cn2PZ5iVjadX2UKGgGR0B2mOvOhTOxaAdNGAFoCEdAp9ptWyTpxHV9lChoBkdAld0Rkqc3EWgHTegDaAhHQKfbRqIJqqR1fZQoaAZHQJPWdvddmg9oB01mA2gIR0Cn5SEm6XjVdX2UKGgGR0CT9Sa9bor4aAdN6ANoCEdAp+Uy2v0ROHV9lChoBkdAk06pwn6VMWgHTegDaAhHQKflN/ZuhsZ1fZQoaAZHQI8cUPYnOSpoB03oA2gIR0Cn56Cn5zo2dX2UKGgGR0CYEB3+MqBmaAdN6ANoCEdAp/FD4UN8V3V9lChoBkdAlxwELpiZv2gHTegDaAhHQKfxVMlC1JF1fZQoaAZHQJp9R4Pf8/FoB03oA2gIR0Cn8Vnqmj0udX2UKGgGR0CTkyxo7FKkaAdN6ANoCEdAp/OjkS26TXV9lChoBkdAk+DK0D2alWgHTegDaAhHQKf9MovSMLp1fZQoaAZHQJeKmY0EX+FoB03oA2gIR0Cn/UYMnZ00dX2UKGgGR0CSzHit7rs0aAdN6ANoCEdAp/1LUqhDgXV9lChoBkdAmHjYu9OARWgHTegDaAhHQKf/n/YJ3Pl1fZQoaAZHQJKXUqaw2VFoB03oA2gIR0CoCTiGWUr1dX2UKGgGR0CYE8Zm7J4jaAdN6ANoCEdAqAlKUs4DLnV9lChoBkdAlUBDzErGzmgHTegDaAhHQKgJT4k/r0J1fZQoaAZHQJW7K2rn1WdoB03oA2gIR0CoC7INNJvpdX2UKGgGR0CZJSMIeHSGaAdN6ANoCEdAqBUzowEhaHV9lChoBkdAllasp1A7gmgHTegDaAhHQKgVRjhDPWx1fZQoaAZHQJraKm3vx6RoB03oA2gIR0CoFUslb/wRdX2UKGgGR0CTpm9kBjnWaAdN6ANoCEdAqBeTwH7gsXV9lChoBkdAmYBEiliz9mgHTegDaAhHQKghCsVclgN1fZQoaAZHQJZ83hn8KohoB03oA2gIR0CoIRu/+Kj0dX2UKGgGR0CWDVk2xY7raAdN6ANoCEdAqCEg0XP7enV9lChoBkdAmD+trKvFFWgHTegDaAhHQKgjahSLqD91fZQoaAZHQJaFMkZ75VRoB03oA2gIR0CoLPQGGEf1dX2UKGgGR0CXcWVJcxCZaAdN6ANoCEdAqC0Erupjt3V9lChoBkdAl+G+vpyIYWgHTegDaAhHQKgtCZOSGJx1fZQoaAZHQJh5fv1DjR5oB03oA2gIR0CoL02gOBlMdX2UKGgGR0CX925iVjZtaAdN6ANoCEdAqDirJyQxOHV9lChoBkdAme/GCyyD7WgHTegDaAhHQKg4u6H0se51fZQoaAZHQJb9fd1uBMBoB03oA2gIR0CoOMHgP3BYdX2UKGgGR0CYaZnqVyFPaAdN6ANoCEdAqDsVoYekpXV9lChoBkdAmHnsvugHvGgHTegDaAhHQKhFFFG5MDh1fZQoaAZHQJee6ofjjrBoB03oA2gIR0CoRSa06YE4dX2UKGgGR0CXv2xS5y2haAdN6ANoCEdAqEUrx0+1SnV9lChoBkdAllX9eyAxz2gHTegDaAhHQKhHtLq2SdR1fZQoaAZHQJGZnqbBoEloB03oA2gIR0CoUacjRlYmdX2UKGgGR0CXuN6fra/RaAdN6ANoCEdAqFG4yqMm4XV9lChoBkdAi4/5ZSvTw2gHTegDaAhHQKhRvkYGdI51fZQoaAZHQJeRU4ffXPJoB03oA2gIR0CoVBvV/c33dX2UKGgGR0CXyH7TlT3qaAdN6ANoCEdAqF3lF+d9UnV9lChoBkdAlS6P9kz412gHTegDaAhHQKhd9u/k/8l1fZQoaAZHQIlBY7FKkEdoB03oA2gIR0CoXfwDeTFEdX2UKGgGR0CW1rYpUgjhaAdN6ANoCEdAqGBdLamGd3V9lChoBkdAhE5x9G7SRmgHTegDaAhHQKhqVDTBqKx1fZQoaAZHQIni/WJ79htoB03oA2gIR0CoamTKs+3ZdX2UKGgGR0CVp30FKTStaAdN6ANoCEdAqGppuZThpHV9lChoBkdAl9x4XTEzf2gHTegDaAhHQKhsrqqOtGN1fZQoaAZHQJXuQ/pt78hoB03oA2gIR0CodkWiUPhAdX2UKGgGR0CWKrZ8KG+LaAdN6ANoCEdAqHZWaBqbjXV9lChoBkdAlgtVP3ztkWgHTegDaAhHQKh2W0+kgwJ1fZQoaAZHQJbrUa1kUbloB03oA2gIR0CoeKZs9B8hdX2UKGgGR0CXOPSFXaJzaAdN6ANoCEdAqIJGdNFjNXV9lChoBkdAmVA7KRuCPWgHTegDaAhHQKiCV+I/JNl1fZQoaAZHQJgEnVRUFStoB03oA2gIR0Cogl0Fr2xqdX2UKGgGR0CagKETg2qDaAdN6ANoCEdAqISlDWsijnVlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11a345ec4ad83ff07d0a6a4420e41c19481cdc84762569d06428af0f4b07abff
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8237641c3bda4b31fb46a9db93273551b07496dbacfebd22d1da5d29c1b95042
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ec9c38d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ec9c38dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ec9c38e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ec9c38ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f0ec9c38f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ec9c3c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ec9c3c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ec9c3c160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ec9c3c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ec9c3c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ec9c3c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ec9c3c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ec9c34900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675025522574299854, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFmmqL7BZic/Ma23PmQrIT/VHmU/okXxPdKmJz0fdhG/g5gNP3+YnT/zHcM+Gnu5Pq9PJD5qgBK/CSskP3Xfnj3xpIU/exGavkOwlT4LGWY/PiQ/vtIasD9Xre2+pjE4v7zMeT/Puhg/hRbOPtgWjb9+0GC+SqBwPzQ3DD5E2qQ+MgwmQJOhgr+em4q+2/VGvo32PD/a5PC+VDhBv3fxGD+vGNI/vJbzPpOFLj9PI+08wJCUP9v56z1EXly+/oPRPtadDz9U8Hw/HbEEP/R6Lb9VLYO/z7oYP4UWzj4MQGg/yD2ePqg/xr6WhQk/tVa4P7IzOzzQxbE+mqB8Ppd4jL93skk/mXGbPw3ZiD/YXYa/hxkVvw6IkT/eZ7C9voMIPmA3tT5HjBM/8KkyPzyMBr9qpDi+IHTsPnFoL782t4M+vMx5P8+6GD+FFs4+2BaNv5lihD+FTkI/jw6TPneD3z+aCv2+6Z6PPxsbtb6aCZK/C/yEP8/seL9c9YI/1a6BPn9fhr/ONgI/Dn6kvnRBDj8GsHU93AyUv5OVp73DPAk/rw3iPtRJob3lfzy/M7VSP7zMeT+GjNa/hRbOPtgWjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACRrMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQqmRPQAAAAB9CvS/AAAAAN3Qsz0AAAAAg1TsPwAAAAAtPcy9AAAAAI7I9j8AAAAA2ASkvAAAAADpfuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCT1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDmDz0AAAAAIGf0vwAAAAABWIc9AAAAAJdi9z8AAAAAjAivvQAAAADExfY/AAAAAEdgtDwAAAAARcX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIBmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvqXQ9AAAAAHi1AMAAAAAAQx4BvgAAAAA0utk/AAAAAPKotzsAAAAAGx/gPwAAAADsMs08AAAAAECv978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAGo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5KkjvAAAAAAxhv6/AAAAACVBmT0AAAAADYXiPwAAAACIcg4+AAAAACHm7z8AAAAAr9GNPQAAAABp3e+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiWFWHUMG6MAWyUTegDjAF0lEdAp2B/7k4m1XV9lChoBkdAlIc29lEqlWgHTegDaAhHQKdh5in5zo51fZQoaAZHQJe7bUy57PZoB03oA2gIR0CnYsKPXCj2dX2UKGgGR0CZYGpHqeK9aAdN6ANoCEdAp2qXS6UaAHV9lChoBkdAk4Ey6lLvkWgHTegDaAhHQKdsflWfbsZ1fZQoaAZHQJSw2DYh+v1oB03oA2gIR0CnbfOUD+zddX2UKGgGR0CQIbnIyTIOaAdN6ANoCEdAp27MXN1QqXV9lChoBkdAkeF4zSCvo2gHTegDaAhHQKd2oAjps411fZQoaAZHQJgaLH+6y0NoB03oA2gIR0CneH2KVII4dX2UKGgGR0CUpf7vXsgMaAdN6ANoCEdAp3n29zwMIHV9lChoBkdAkx85Grjo6mgHTegDaAhHQKd61KW9lEt1fZQoaAZHQJXdLdFfAsVoB03oA2gIR0CngqCsfaHsdX2UKGgGR0CDYER02cawaAdN6ANoCEdAp4SN3IMjNnV9lChoBkdAlSknQ6ZH/mgHTegDaAhHQKeGAznA6+51fZQoaAZHQJS+qFQEZBNoB03oA2gIR0CnhtiR4hUzdX2UKGgGR0CXKxEQoTf0aAdN6ANoCEdAp46FmrbQC3V9lChoBkdAmRDUZR8+imgHTegDaAhHQKeQaCTUy591fZQoaAZHQJhGd/qgRK9oB03oA2gIR0Cnkd3gccU/dX2UKGgGR0CWEsAxBVuKaAdN6ANoCEdAp5K1ZNfw7XV9lChoBkdAl3oA1zhgmmgHTegDaAhHQKeaWjmjj711fZQoaAZHQJHsYEmplz5oB01sA2gIR0CnnCs5OrQxdX2UKGgGR0Cb4QA/s3Q2aAdN6ANoCEdAp5wv/1g6VHV9lChoBkdAmeFYOhCdBmgHTegDaAhHQKeefUlzEJl1fZQoaAZHQJFkS/vfCQ9oB03oA2gIR0Cnpi25xzaLdX2UKGgGR0CWIEjYZl4DaAdN6ANoCEdAp6gHrGBFu3V9lChoBkdAkUKz6SDAamgHTegDaAhHQKeoDRjz7Mx1fZQoaAZHQJvjG5nUUfxoB03oA2gIR0CnqmHf2saLdX2UKGgGR0CTNmlMRHwxaAdN6ANoCEdAp7IZHTZxrHV9lChoBkdAmdit8Aq/d2gHTegDaAhHQKez7XEIgNh1fZQoaAZHQJpjrrpqynloB03oA2gIR0Cns/KL0jC6dX2UKGgGR0CW9mj3mFJyaAdN6ANoCEdAp7ZBUFSsKnV9lChoBkdAlJ17aM72c2gHTegDaAhHQKe+Chpxm051fZQoaAZHQJTZuEbo8p1oB03oA2gIR0Cnv+D7IkqudX2UKGgGR0CUE0GvwEyMaAdN6ANoCEdAp7/mCwr1/XV9lChoBkdAii5RtpEhJWgHTegDaAhHQKfCLdTo+wF1fZQoaAZHQJf0hARkEs9oB03oA2gIR0CnyluUD+zddX2UKGgGR0CS5aj/dZaFaAdN6ANoCEdAp8xRhpg1FnV9lChoBkdAmDCgpBomHGgHTegDaAhHQKfMVrBTGYN1fZQoaAZHQJoLyHtWuHNoB03oA2gIR0Cnzug7xNItdX2UKGgGR0CWlWGaQV9GaAdN6ANoCEdAp9cJDNQj2XV9lChoBkdAkx+jawljVmgHTegDaAhHQKfY8YKIBR11fZQoaAZHQJeVUf+0gKZoB03oA2gIR0Cn2PZ5iVjadX2UKGgGR0B2mOvOhTOxaAdNGAFoCEdAp9ptWyTpxHV9lChoBkdAld0Rkqc3EWgHTegDaAhHQKfbRqIJqqR1fZQoaAZHQJPWdvddmg9oB01mA2gIR0Cn5SEm6XjVdX2UKGgGR0CT9Sa9bor4aAdN6ANoCEdAp+Uy2v0ROHV9lChoBkdAk06pwn6VMWgHTegDaAhHQKflN/ZuhsZ1fZQoaAZHQI8cUPYnOSpoB03oA2gIR0Cn56Cn5zo2dX2UKGgGR0CYEB3+MqBmaAdN6ANoCEdAp/FD4UN8V3V9lChoBkdAlxwELpiZv2gHTegDaAhHQKfxVMlC1JF1fZQoaAZHQJp9R4Pf8/FoB03oA2gIR0Cn8Vnqmj0udX2UKGgGR0CTkyxo7FKkaAdN6ANoCEdAp/OjkS26TXV9lChoBkdAk+DK0D2alWgHTegDaAhHQKf9MovSMLp1fZQoaAZHQJeKmY0EX+FoB03oA2gIR0Cn/UYMnZ00dX2UKGgGR0CSzHit7rs0aAdN6ANoCEdAp/1LUqhDgXV9lChoBkdAmHjYu9OARWgHTegDaAhHQKf/n/YJ3Pl1fZQoaAZHQJKXUqaw2VFoB03oA2gIR0CoCTiGWUr1dX2UKGgGR0CYE8Zm7J4jaAdN6ANoCEdAqAlKUs4DLnV9lChoBkdAlUBDzErGzmgHTegDaAhHQKgJT4k/r0J1fZQoaAZHQJW7K2rn1WdoB03oA2gIR0CoC7INNJvpdX2UKGgGR0CZJSMIeHSGaAdN6ANoCEdAqBUzowEhaHV9lChoBkdAllasp1A7gmgHTegDaAhHQKgVRjhDPWx1fZQoaAZHQJraKm3vx6RoB03oA2gIR0CoFUslb/wRdX2UKGgGR0CTpm9kBjnWaAdN6ANoCEdAqBeTwH7gsXV9lChoBkdAmYBEiliz9mgHTegDaAhHQKghCsVclgN1fZQoaAZHQJZ83hn8KohoB03oA2gIR0CoIRu/+Kj0dX2UKGgGR0CWDVk2xY7raAdN6ANoCEdAqCEg0XP7enV9lChoBkdAmD+trKvFFWgHTegDaAhHQKgjahSLqD91fZQoaAZHQJaFMkZ75VRoB03oA2gIR0CoLPQGGEf1dX2UKGgGR0CXcWVJcxCZaAdN6ANoCEdAqC0Erupjt3V9lChoBkdAl+G+vpyIYWgHTegDaAhHQKgtCZOSGJx1fZQoaAZHQJh5fv1DjR5oB03oA2gIR0CoL02gOBlMdX2UKGgGR0CX925iVjZtaAdN6ANoCEdAqDirJyQxOHV9lChoBkdAme/GCyyD7WgHTegDaAhHQKg4u6H0se51fZQoaAZHQJb9fd1uBMBoB03oA2gIR0CoOMHgP3BYdX2UKGgGR0CYaZnqVyFPaAdN6ANoCEdAqDsVoYekpXV9lChoBkdAmHnsvugHvGgHTegDaAhHQKhFFFG5MDh1fZQoaAZHQJee6ofjjrBoB03oA2gIR0CoRSa06YE4dX2UKGgGR0CXv2xS5y2haAdN6ANoCEdAqEUrx0+1SnV9lChoBkdAllX9eyAxz2gHTegDaAhHQKhHtLq2SdR1fZQoaAZHQJGZnqbBoEloB03oA2gIR0CoUacjRlYmdX2UKGgGR0CXuN6fra/RaAdN6ANoCEdAqFG4yqMm4XV9lChoBkdAi4/5ZSvTw2gHTegDaAhHQKhRvkYGdI51fZQoaAZHQJeRU4ffXPJoB03oA2gIR0CoVBvV/c33dX2UKGgGR0CXyH7TlT3qaAdN6ANoCEdAqF3lF+d9UnV9lChoBkdAlS6P9kz412gHTegDaAhHQKhd9u/k/8l1fZQoaAZHQIlBY7FKkEdoB03oA2gIR0CoXfwDeTFEdX2UKGgGR0CW1rYpUgjhaAdN6ANoCEdAqGBdLamGd3V9lChoBkdAhE5x9G7SRmgHTegDaAhHQKhqVDTBqKx1fZQoaAZHQIni/WJ79htoB03oA2gIR0CoamTKs+3ZdX2UKGgGR0CVp30FKTStaAdN6ANoCEdAqGppuZThpHV9lChoBkdAl9x4XTEzf2gHTegDaAhHQKhsrqqOtGN1fZQoaAZHQJXuQ/pt78hoB03oA2gIR0CodkWiUPhAdX2UKGgGR0CWKrZ8KG+LaAdN6ANoCEdAqHZWaBqbjXV9lChoBkdAlgtVP3ztkWgHTegDaAhHQKh2W0+kgwJ1fZQoaAZHQJbrUa1kUbloB03oA2gIR0CoeKZs9B8hdX2UKGgGR0CXOPSFXaJzaAdN6ANoCEdAqIJGdNFjNXV9lChoBkdAmVA7KRuCPWgHTegDaAhHQKiCV+I/JNl1fZQoaAZHQJgEnVRUFStoB03oA2gIR0Cogl0Fr2xqdX2UKGgGR0CagKETg2qDaAdN6ANoCEdAqISlDWsijnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:370c0e7e623cdcfe9a4ce9db9088fb9e0360ecca899516ad1553818ac2caded5
3
+ size 1030623
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1598.6051004590583, "std_reward": 76.07149998977727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T21:45:18.945313"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6756c769e9c9cc3845a871bb5e983e5d070b13176cdfba80681afe965a6c0c1f
3
+ size 2129