Commit
·
ff30af9
1
Parent(s):
f5ef3e3
Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1598.61 +/- 76.07
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:45d16df86ed87f079b7f5339b11bd029a3764b336e2404333aae8bacbc8dd62e
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ec9c38d30>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ec9c38dc0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ec9c38e50>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ec9c38ee0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f0ec9c38f70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f0ec9c3c040>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ec9c3c0d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ec9c3c160>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f0ec9c3c1f0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ec9c3c280>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ec9c3c310>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ec9c3c3a0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f0ec9c34900>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1675025522574299854,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFmmqL7BZic/Ma23PmQrIT/VHmU/okXxPdKmJz0fdhG/g5gNP3+YnT/zHcM+Gnu5Pq9PJD5qgBK/CSskP3Xfnj3xpIU/exGavkOwlT4LGWY/PiQ/vtIasD9Xre2+pjE4v7zMeT/Puhg/hRbOPtgWjb9+0GC+SqBwPzQ3DD5E2qQ+MgwmQJOhgr+em4q+2/VGvo32PD/a5PC+VDhBv3fxGD+vGNI/vJbzPpOFLj9PI+08wJCUP9v56z1EXly+/oPRPtadDz9U8Hw/HbEEP/R6Lb9VLYO/z7oYP4UWzj4MQGg/yD2ePqg/xr6WhQk/tVa4P7IzOzzQxbE+mqB8Ppd4jL93skk/mXGbPw3ZiD/YXYa/hxkVvw6IkT/eZ7C9voMIPmA3tT5HjBM/8KkyPzyMBr9qpDi+IHTsPnFoL782t4M+vMx5P8+6GD+FFs4+2BaNv5lihD+FTkI/jw6TPneD3z+aCv2+6Z6PPxsbtb6aCZK/C/yEP8/seL9c9YI/1a6BPn9fhr/ONgI/Dn6kvnRBDj8GsHU93AyUv5OVp73DPAk/rw3iPtRJob3lfzy/M7VSP7zMeT+GjNa/hRbOPtgWjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACRrMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQqmRPQAAAAB9CvS/AAAAAN3Qsz0AAAAAg1TsPwAAAAAtPcy9AAAAAI7I9j8AAAAA2ASkvAAAAADpfuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCT1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDmDz0AAAAAIGf0vwAAAAABWIc9AAAAAJdi9z8AAAAAjAivvQAAAADExfY/AAAAAEdgtDwAAAAARcX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIBmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvqXQ9AAAAAHi1AMAAAAAAQx4BvgAAAAA0utk/AAAAAPKotzsAAAAAGx/gPwAAAADsMs08AAAAAECv978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAGo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5KkjvAAAAAAxhv6/AAAAACVBmT0AAAAADYXiPwAAAACIcg4+AAAAACHm7z8AAAAAr9GNPQAAAABp3e+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiWFWHUMG6MAWyUTegDjAF0lEdAp2B/7k4m1XV9lChoBkdAlIc29lEqlWgHTegDaAhHQKdh5in5zo51fZQoaAZHQJe7bUy57PZoB03oA2gIR0CnYsKPXCj2dX2UKGgGR0CZYGpHqeK9aAdN6ANoCEdAp2qXS6UaAHV9lChoBkdAk4Ey6lLvkWgHTegDaAhHQKdsflWfbsZ1fZQoaAZHQJSw2DYh+v1oB03oA2gIR0CnbfOUD+zddX2UKGgGR0CQIbnIyTIOaAdN6ANoCEdAp27MXN1QqXV9lChoBkdAkeF4zSCvo2gHTegDaAhHQKd2oAjps411fZQoaAZHQJgaLH+6y0NoB03oA2gIR0CneH2KVII4dX2UKGgGR0CUpf7vXsgMaAdN6ANoCEdAp3n29zwMIHV9lChoBkdAkx85Grjo6mgHTegDaAhHQKd61KW9lEt1fZQoaAZHQJXdLdFfAsVoB03oA2gIR0CngqCsfaHsdX2UKGgGR0CDYER02cawaAdN6ANoCEdAp4SN3IMjNnV9lChoBkdAlSknQ6ZH/mgHTegDaAhHQKeGAznA6+51fZQoaAZHQJS+qFQEZBNoB03oA2gIR0CnhtiR4hUzdX2UKGgGR0CXKxEQoTf0aAdN6ANoCEdAp46FmrbQC3V9lChoBkdAmRDUZR8+imgHTegDaAhHQKeQaCTUy591fZQoaAZHQJhGd/qgRK9oB03oA2gIR0Cnkd3gccU/dX2UKGgGR0CWEsAxBVuKaAdN6ANoCEdAp5K1ZNfw7XV9lChoBkdAl3oA1zhgmmgHTegDaAhHQKeaWjmjj711fZQoaAZHQJHsYEmplz5oB01sA2gIR0CnnCs5OrQxdX2UKGgGR0Cb4QA/s3Q2aAdN6ANoCEdAp5wv/1g6VHV9lChoBkdAmeFYOhCdBmgHTegDaAhHQKeefUlzEJl1fZQoaAZHQJFkS/vfCQ9oB03oA2gIR0Cnpi25xzaLdX2UKGgGR0CWIEjYZl4DaAdN6ANoCEdAp6gHrGBFu3V9lChoBkdAkUKz6SDAamgHTegDaAhHQKeoDRjz7Mx1fZQoaAZHQJvjG5nUUfxoB03oA2gIR0CnqmHf2saLdX2UKGgGR0CTNmlMRHwxaAdN6ANoCEdAp7IZHTZxrHV9lChoBkdAmdit8Aq/d2gHTegDaAhHQKez7XEIgNh1fZQoaAZHQJpjrrpqynloB03oA2gIR0Cns/KL0jC6dX2UKGgGR0CW9mj3mFJyaAdN6ANoCEdAp7ZBUFSsKnV9lChoBkdAlJ17aM72c2gHTegDaAhHQKe+Chpxm051fZQoaAZHQJTZuEbo8p1oB03oA2gIR0Cnv+D7IkqudX2UKGgGR0CUE0GvwEyMaAdN6ANoCEdAp7/mCwr1/XV9lChoBkdAii5RtpEhJWgHTegDaAhHQKfCLdTo+wF1fZQoaAZHQJf0hARkEs9oB03oA2gIR0CnyluUD+zddX2UKGgGR0CS5aj/dZaFaAdN6ANoCEdAp8xRhpg1FnV9lChoBkdAmDCgpBomHGgHTegDaAhHQKfMVrBTGYN1fZQoaAZHQJoLyHtWuHNoB03oA2gIR0Cnzug7xNItdX2UKGgGR0CWlWGaQV9GaAdN6ANoCEdAp9cJDNQj2XV9lChoBkdAkx+jawljVmgHTegDaAhHQKfY8YKIBR11fZQoaAZHQJeVUf+0gKZoB03oA2gIR0Cn2PZ5iVjadX2UKGgGR0B2mOvOhTOxaAdNGAFoCEdAp9ptWyTpxHV9lChoBkdAld0Rkqc3EWgHTegDaAhHQKfbRqIJqqR1fZQoaAZHQJPWdvddmg9oB01mA2gIR0Cn5SEm6XjVdX2UKGgGR0CT9Sa9bor4aAdN6ANoCEdAp+Uy2v0ROHV9lChoBkdAk06pwn6VMWgHTegDaAhHQKflN/ZuhsZ1fZQoaAZHQI8cUPYnOSpoB03oA2gIR0Cn56Cn5zo2dX2UKGgGR0CYEB3+MqBmaAdN6ANoCEdAp/FD4UN8V3V9lChoBkdAlxwELpiZv2gHTegDaAhHQKfxVMlC1JF1fZQoaAZHQJp9R4Pf8/FoB03oA2gIR0Cn8Vnqmj0udX2UKGgGR0CTkyxo7FKkaAdN6ANoCEdAp/OjkS26TXV9lChoBkdAk+DK0D2alWgHTegDaAhHQKf9MovSMLp1fZQoaAZHQJeKmY0EX+FoB03oA2gIR0Cn/UYMnZ00dX2UKGgGR0CSzHit7rs0aAdN6ANoCEdAp/1LUqhDgXV9lChoBkdAmHjYu9OARWgHTegDaAhHQKf/n/YJ3Pl1fZQoaAZHQJKXUqaw2VFoB03oA2gIR0CoCTiGWUr1dX2UKGgGR0CYE8Zm7J4jaAdN6ANoCEdAqAlKUs4DLnV9lChoBkdAlUBDzErGzmgHTegDaAhHQKgJT4k/r0J1fZQoaAZHQJW7K2rn1WdoB03oA2gIR0CoC7INNJvpdX2UKGgGR0CZJSMIeHSGaAdN6ANoCEdAqBUzowEhaHV9lChoBkdAllasp1A7gmgHTegDaAhHQKgVRjhDPWx1fZQoaAZHQJraKm3vx6RoB03oA2gIR0CoFUslb/wRdX2UKGgGR0CTpm9kBjnWaAdN6ANoCEdAqBeTwH7gsXV9lChoBkdAmYBEiliz9mgHTegDaAhHQKghCsVclgN1fZQoaAZHQJZ83hn8KohoB03oA2gIR0CoIRu/+Kj0dX2UKGgGR0CWDVk2xY7raAdN6ANoCEdAqCEg0XP7enV9lChoBkdAmD+trKvFFWgHTegDaAhHQKgjahSLqD91fZQoaAZHQJaFMkZ75VRoB03oA2gIR0CoLPQGGEf1dX2UKGgGR0CXcWVJcxCZaAdN6ANoCEdAqC0Erupjt3V9lChoBkdAl+G+vpyIYWgHTegDaAhHQKgtCZOSGJx1fZQoaAZHQJh5fv1DjR5oB03oA2gIR0CoL02gOBlMdX2UKGgGR0CX925iVjZtaAdN6ANoCEdAqDirJyQxOHV9lChoBkdAme/GCyyD7WgHTegDaAhHQKg4u6H0se51fZQoaAZHQJb9fd1uBMBoB03oA2gIR0CoOMHgP3BYdX2UKGgGR0CYaZnqVyFPaAdN6ANoCEdAqDsVoYekpXV9lChoBkdAmHnsvugHvGgHTegDaAhHQKhFFFG5MDh1fZQoaAZHQJee6ofjjrBoB03oA2gIR0CoRSa06YE4dX2UKGgGR0CXv2xS5y2haAdN6ANoCEdAqEUrx0+1SnV9lChoBkdAllX9eyAxz2gHTegDaAhHQKhHtLq2SdR1fZQoaAZHQJGZnqbBoEloB03oA2gIR0CoUacjRlYmdX2UKGgGR0CXuN6fra/RaAdN6ANoCEdAqFG4yqMm4XV9lChoBkdAi4/5ZSvTw2gHTegDaAhHQKhRvkYGdI51fZQoaAZHQJeRU4ffXPJoB03oA2gIR0CoVBvV/c33dX2UKGgGR0CXyH7TlT3qaAdN6ANoCEdAqF3lF+d9UnV9lChoBkdAlS6P9kz412gHTegDaAhHQKhd9u/k/8l1fZQoaAZHQIlBY7FKkEdoB03oA2gIR0CoXfwDeTFEdX2UKGgGR0CW1rYpUgjhaAdN6ANoCEdAqGBdLamGd3V9lChoBkdAhE5x9G7SRmgHTegDaAhHQKhqVDTBqKx1fZQoaAZHQIni/WJ79htoB03oA2gIR0CoamTKs+3ZdX2UKGgGR0CVp30FKTStaAdN6ANoCEdAqGppuZThpHV9lChoBkdAl9x4XTEzf2gHTegDaAhHQKhsrqqOtGN1fZQoaAZHQJXuQ/pt78hoB03oA2gIR0CodkWiUPhAdX2UKGgGR0CWKrZ8KG+LaAdN6ANoCEdAqHZWaBqbjXV9lChoBkdAlgtVP3ztkWgHTegDaAhHQKh2W0+kgwJ1fZQoaAZHQJbrUa1kUbloB03oA2gIR0CoeKZs9B8hdX2UKGgGR0CXOPSFXaJzaAdN6ANoCEdAqIJGdNFjNXV9lChoBkdAmVA7KRuCPWgHTegDaAhHQKiCV+I/JNl1fZQoaAZHQJgEnVRUFStoB03oA2gIR0Cogl0Fr2xqdX2UKGgGR0CagKETg2qDaAdN6ANoCEdAqISlDWsijnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11a345ec4ad83ff07d0a6a4420e41c19481cdc84762569d06428af0f4b07abff
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8237641c3bda4b31fb46a9db93273551b07496dbacfebd22d1da5d29c1b95042
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0ec9c38d30>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0ec9c38dc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0ec9c38e50>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f0ec9c38ee0>", "_build": "<function ActorCriticPolicy._build at 0x7f0ec9c38f70>", "forward": "<function ActorCriticPolicy.forward at 0x7f0ec9c3c040>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0ec9c3c0d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0ec9c3c160>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0ec9c3c1f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0ec9c3c280>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0ec9c3c310>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0ec9c3c3a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0ec9c34900>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1675025522574299854, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFmmqL7BZic/Ma23PmQrIT/VHmU/okXxPdKmJz0fdhG/g5gNP3+YnT/zHcM+Gnu5Pq9PJD5qgBK/CSskP3Xfnj3xpIU/exGavkOwlT4LGWY/PiQ/vtIasD9Xre2+pjE4v7zMeT/Puhg/hRbOPtgWjb9+0GC+SqBwPzQ3DD5E2qQ+MgwmQJOhgr+em4q+2/VGvo32PD/a5PC+VDhBv3fxGD+vGNI/vJbzPpOFLj9PI+08wJCUP9v56z1EXly+/oPRPtadDz9U8Hw/HbEEP/R6Lb9VLYO/z7oYP4UWzj4MQGg/yD2ePqg/xr6WhQk/tVa4P7IzOzzQxbE+mqB8Ppd4jL93skk/mXGbPw3ZiD/YXYa/hxkVvw6IkT/eZ7C9voMIPmA3tT5HjBM/8KkyPzyMBr9qpDi+IHTsPnFoL782t4M+vMx5P8+6GD+FFs4+2BaNv5lihD+FTkI/jw6TPneD3z+aCv2+6Z6PPxsbtb6aCZK/C/yEP8/seL9c9YI/1a6BPn9fhr/ONgI/Dn6kvnRBDj8GsHU93AyUv5OVp73DPAk/rw3iPtRJob3lfzy/M7VSP7zMeT+GjNa/hRbOPtgWjb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACRrMK1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAQqmRPQAAAAB9CvS/AAAAAN3Qsz0AAAAAg1TsPwAAAAAtPcy9AAAAAI7I9j8AAAAA2ASkvAAAAADpfuq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAyCT1tQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgHDmDz0AAAAAIGf0vwAAAAABWIc9AAAAAJdi9z8AAAAAjAivvQAAAADExfY/AAAAAEdgtDwAAAAARcX/vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABIBmbYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDvqXQ9AAAAAHi1AMAAAAAAQx4BvgAAAAA0utk/AAAAAPKotzsAAAAAGx/gPwAAAADsMs08AAAAAECv978AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJAGo2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA5KkjvAAAAAAxhv6/AAAAACVBmT0AAAAADYXiPwAAAACIcg4+AAAAACHm7z8AAAAAr9GNPQAAAABp3e+/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJiWFWHUMG6MAWyUTegDjAF0lEdAp2B/7k4m1XV9lChoBkdAlIc29lEqlWgHTegDaAhHQKdh5in5zo51fZQoaAZHQJe7bUy57PZoB03oA2gIR0CnYsKPXCj2dX2UKGgGR0CZYGpHqeK9aAdN6ANoCEdAp2qXS6UaAHV9lChoBkdAk4Ey6lLvkWgHTegDaAhHQKdsflWfbsZ1fZQoaAZHQJSw2DYh+v1oB03oA2gIR0CnbfOUD+zddX2UKGgGR0CQIbnIyTIOaAdN6ANoCEdAp27MXN1QqXV9lChoBkdAkeF4zSCvo2gHTegDaAhHQKd2oAjps411fZQoaAZHQJgaLH+6y0NoB03oA2gIR0CneH2KVII4dX2UKGgGR0CUpf7vXsgMaAdN6ANoCEdAp3n29zwMIHV9lChoBkdAkx85Grjo6mgHTegDaAhHQKd61KW9lEt1fZQoaAZHQJXdLdFfAsVoB03oA2gIR0CngqCsfaHsdX2UKGgGR0CDYER02cawaAdN6ANoCEdAp4SN3IMjNnV9lChoBkdAlSknQ6ZH/mgHTegDaAhHQKeGAznA6+51fZQoaAZHQJS+qFQEZBNoB03oA2gIR0CnhtiR4hUzdX2UKGgGR0CXKxEQoTf0aAdN6ANoCEdAp46FmrbQC3V9lChoBkdAmRDUZR8+imgHTegDaAhHQKeQaCTUy591fZQoaAZHQJhGd/qgRK9oB03oA2gIR0Cnkd3gccU/dX2UKGgGR0CWEsAxBVuKaAdN6ANoCEdAp5K1ZNfw7XV9lChoBkdAl3oA1zhgmmgHTegDaAhHQKeaWjmjj711fZQoaAZHQJHsYEmplz5oB01sA2gIR0CnnCs5OrQxdX2UKGgGR0Cb4QA/s3Q2aAdN6ANoCEdAp5wv/1g6VHV9lChoBkdAmeFYOhCdBmgHTegDaAhHQKeefUlzEJl1fZQoaAZHQJFkS/vfCQ9oB03oA2gIR0Cnpi25xzaLdX2UKGgGR0CWIEjYZl4DaAdN6ANoCEdAp6gHrGBFu3V9lChoBkdAkUKz6SDAamgHTegDaAhHQKeoDRjz7Mx1fZQoaAZHQJvjG5nUUfxoB03oA2gIR0CnqmHf2saLdX2UKGgGR0CTNmlMRHwxaAdN6ANoCEdAp7IZHTZxrHV9lChoBkdAmdit8Aq/d2gHTegDaAhHQKez7XEIgNh1fZQoaAZHQJpjrrpqynloB03oA2gIR0Cns/KL0jC6dX2UKGgGR0CW9mj3mFJyaAdN6ANoCEdAp7ZBUFSsKnV9lChoBkdAlJ17aM72c2gHTegDaAhHQKe+Chpxm051fZQoaAZHQJTZuEbo8p1oB03oA2gIR0Cnv+D7IkqudX2UKGgGR0CUE0GvwEyMaAdN6ANoCEdAp7/mCwr1/XV9lChoBkdAii5RtpEhJWgHTegDaAhHQKfCLdTo+wF1fZQoaAZHQJf0hARkEs9oB03oA2gIR0CnyluUD+zddX2UKGgGR0CS5aj/dZaFaAdN6ANoCEdAp8xRhpg1FnV9lChoBkdAmDCgpBomHGgHTegDaAhHQKfMVrBTGYN1fZQoaAZHQJoLyHtWuHNoB03oA2gIR0Cnzug7xNItdX2UKGgGR0CWlWGaQV9GaAdN6ANoCEdAp9cJDNQj2XV9lChoBkdAkx+jawljVmgHTegDaAhHQKfY8YKIBR11fZQoaAZHQJeVUf+0gKZoB03oA2gIR0Cn2PZ5iVjadX2UKGgGR0B2mOvOhTOxaAdNGAFoCEdAp9ptWyTpxHV9lChoBkdAld0Rkqc3EWgHTegDaAhHQKfbRqIJqqR1fZQoaAZHQJPWdvddmg9oB01mA2gIR0Cn5SEm6XjVdX2UKGgGR0CT9Sa9bor4aAdN6ANoCEdAp+Uy2v0ROHV9lChoBkdAk06pwn6VMWgHTegDaAhHQKflN/ZuhsZ1fZQoaAZHQI8cUPYnOSpoB03oA2gIR0Cn56Cn5zo2dX2UKGgGR0CYEB3+MqBmaAdN6ANoCEdAp/FD4UN8V3V9lChoBkdAlxwELpiZv2gHTegDaAhHQKfxVMlC1JF1fZQoaAZHQJp9R4Pf8/FoB03oA2gIR0Cn8Vnqmj0udX2UKGgGR0CTkyxo7FKkaAdN6ANoCEdAp/OjkS26TXV9lChoBkdAk+DK0D2alWgHTegDaAhHQKf9MovSMLp1fZQoaAZHQJeKmY0EX+FoB03oA2gIR0Cn/UYMnZ00dX2UKGgGR0CSzHit7rs0aAdN6ANoCEdAp/1LUqhDgXV9lChoBkdAmHjYu9OARWgHTegDaAhHQKf/n/YJ3Pl1fZQoaAZHQJKXUqaw2VFoB03oA2gIR0CoCTiGWUr1dX2UKGgGR0CYE8Zm7J4jaAdN6ANoCEdAqAlKUs4DLnV9lChoBkdAlUBDzErGzmgHTegDaAhHQKgJT4k/r0J1fZQoaAZHQJW7K2rn1WdoB03oA2gIR0CoC7INNJvpdX2UKGgGR0CZJSMIeHSGaAdN6ANoCEdAqBUzowEhaHV9lChoBkdAllasp1A7gmgHTegDaAhHQKgVRjhDPWx1fZQoaAZHQJraKm3vx6RoB03oA2gIR0CoFUslb/wRdX2UKGgGR0CTpm9kBjnWaAdN6ANoCEdAqBeTwH7gsXV9lChoBkdAmYBEiliz9mgHTegDaAhHQKghCsVclgN1fZQoaAZHQJZ83hn8KohoB03oA2gIR0CoIRu/+Kj0dX2UKGgGR0CWDVk2xY7raAdN6ANoCEdAqCEg0XP7enV9lChoBkdAmD+trKvFFWgHTegDaAhHQKgjahSLqD91fZQoaAZHQJaFMkZ75VRoB03oA2gIR0CoLPQGGEf1dX2UKGgGR0CXcWVJcxCZaAdN6ANoCEdAqC0Erupjt3V9lChoBkdAl+G+vpyIYWgHTegDaAhHQKgtCZOSGJx1fZQoaAZHQJh5fv1DjR5oB03oA2gIR0CoL02gOBlMdX2UKGgGR0CX925iVjZtaAdN6ANoCEdAqDirJyQxOHV9lChoBkdAme/GCyyD7WgHTegDaAhHQKg4u6H0se51fZQoaAZHQJb9fd1uBMBoB03oA2gIR0CoOMHgP3BYdX2UKGgGR0CYaZnqVyFPaAdN6ANoCEdAqDsVoYekpXV9lChoBkdAmHnsvugHvGgHTegDaAhHQKhFFFG5MDh1fZQoaAZHQJee6ofjjrBoB03oA2gIR0CoRSa06YE4dX2UKGgGR0CXv2xS5y2haAdN6ANoCEdAqEUrx0+1SnV9lChoBkdAllX9eyAxz2gHTegDaAhHQKhHtLq2SdR1fZQoaAZHQJGZnqbBoEloB03oA2gIR0CoUacjRlYmdX2UKGgGR0CXuN6fra/RaAdN6ANoCEdAqFG4yqMm4XV9lChoBkdAi4/5ZSvTw2gHTegDaAhHQKhRvkYGdI51fZQoaAZHQJeRU4ffXPJoB03oA2gIR0CoVBvV/c33dX2UKGgGR0CXyH7TlT3qaAdN6ANoCEdAqF3lF+d9UnV9lChoBkdAlS6P9kz412gHTegDaAhHQKhd9u/k/8l1fZQoaAZHQIlBY7FKkEdoB03oA2gIR0CoXfwDeTFEdX2UKGgGR0CW1rYpUgjhaAdN6ANoCEdAqGBdLamGd3V9lChoBkdAhE5x9G7SRmgHTegDaAhHQKhqVDTBqKx1fZQoaAZHQIni/WJ79htoB03oA2gIR0CoamTKs+3ZdX2UKGgGR0CVp30FKTStaAdN6ANoCEdAqGppuZThpHV9lChoBkdAl9x4XTEzf2gHTegDaAhHQKhsrqqOtGN1fZQoaAZHQJXuQ/pt78hoB03oA2gIR0CodkWiUPhAdX2UKGgGR0CWKrZ8KG+LaAdN6ANoCEdAqHZWaBqbjXV9lChoBkdAlgtVP3ztkWgHTegDaAhHQKh2W0+kgwJ1fZQoaAZHQJbrUa1kUbloB03oA2gIR0CoeKZs9B8hdX2UKGgGR0CXOPSFXaJzaAdN6ANoCEdAqIJGdNFjNXV9lChoBkdAmVA7KRuCPWgHTegDaAhHQKiCV+I/JNl1fZQoaAZHQJgEnVRUFStoB03oA2gIR0Cogl0Fr2xqdX2UKGgGR0CagKETg2qDaAdN6ANoCEdAqISlDWsijnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:370c0e7e623cdcfe9a4ce9db9088fb9e0360ecca899516ad1553818ac2caded5
|
3 |
+
size 1030623
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1598.6051004590583, "std_reward": 76.07149998977727, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-29T21:45:18.945313"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6756c769e9c9cc3845a871bb5e983e5d070b13176cdfba80681afe965a6c0c1f
|
3 |
+
size 2129
|