Commit
·
7261ba7
1
Parent(s):
425eb48
Initial commit
Browse files- README.md +37 -0
- a2c-PandaReachDense-v2.zip +3 -0
- a2c-PandaReachDense-v2/_stable_baselines3_version +1 -0
- a2c-PandaReachDense-v2/data +94 -0
- a2c-PandaReachDense-v2/policy.optimizer.pth +3 -0
- a2c-PandaReachDense-v2/policy.pth +3 -0
- a2c-PandaReachDense-v2/pytorch_variables.pth +3 -0
- a2c-PandaReachDense-v2/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +0 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaReachDense-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaReachDense-v2
|
16 |
+
type: PandaReachDense-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -1.91 +/- 0.38
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **PandaReachDense-v2**
|
25 |
+
This is a trained model of a **A2C** agent playing **PandaReachDense-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-PandaReachDense-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:19fdc443cf41408f33a56d735e524e47914c22e879cd62c3b2e7f2f9471c8858
|
3 |
+
size 107768
|
a2c-PandaReachDense-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-PandaReachDense-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f322dbc5ee0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f322dbbded0>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
":type:": "<class 'dict'>",
|
14 |
+
":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=",
|
15 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
16 |
+
"optimizer_kwargs": {
|
17 |
+
"alpha": 0.99,
|
18 |
+
"eps": 1e-05,
|
19 |
+
"weight_decay": 0
|
20 |
+
}
|
21 |
+
},
|
22 |
+
"observation_space": {
|
23 |
+
":type:": "<class 'gym.spaces.dict.Dict'>",
|
24 |
+
":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu",
|
25 |
+
"spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])",
|
26 |
+
"_shape": null,
|
27 |
+
"dtype": null,
|
28 |
+
"_np_random": null
|
29 |
+
},
|
30 |
+
"action_space": {
|
31 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
32 |
+
":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==",
|
33 |
+
"dtype": "float32",
|
34 |
+
"_shape": [
|
35 |
+
3
|
36 |
+
],
|
37 |
+
"low": "[-1. -1. -1.]",
|
38 |
+
"high": "[1. 1. 1.]",
|
39 |
+
"bounded_below": "[ True True True]",
|
40 |
+
"bounded_above": "[ True True True]",
|
41 |
+
"_np_random": null
|
42 |
+
},
|
43 |
+
"n_envs": 4,
|
44 |
+
"num_timesteps": 1000000,
|
45 |
+
"_total_timesteps": 1000000,
|
46 |
+
"_num_timesteps_at_start": 0,
|
47 |
+
"seed": null,
|
48 |
+
"action_noise": null,
|
49 |
+
"start_time": 1676739865712432927,
|
50 |
+
"learning_rate": 0.0007,
|
51 |
+
"tensorboard_log": null,
|
52 |
+
"lr_schedule": {
|
53 |
+
":type:": "<class 'function'>",
|
54 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
55 |
+
},
|
56 |
+
"_last_obs": {
|
57 |
+
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdm8aP31NrL8mn7U/TdjQv4QQw7+n+DI9KvVAPi0fPD+SKds/wajGPjqoqD/+GLy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]]",
|
60 |
+
"desired_goal": "[[ 0.60326326 -1.3461148 1.4189193 ]\n [-1.631601 -1.5239415 0.04369416]\n [ 0.18843523 0.7348507 1.7122061 ]\n [ 0.38800624 1.3176339 -1.4695127 ]]",
|
61 |
+
"observation": "[[ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]]"
|
62 |
+
},
|
63 |
+
"_last_episode_starts": {
|
64 |
+
":type:": "<class 'numpy.ndarray'>",
|
65 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
66 |
+
},
|
67 |
+
"_last_original_obs": {
|
68 |
+
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZniivY2kWz2Jy/w96LWrvUU+9DzYO2I+w4EYvsveEL0zMSw9sP3oPQCyCD6wzaY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
+
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.0793312 0.05362372 0.12343509]\n [-0.08384305 0.02981485 0.22093141]\n [-0.1489325 -0.03536872 0.04203911]\n [ 0.11376512 0.13349152 0.08144701]]",
|
72 |
+
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
+
},
|
74 |
+
"_episode_num": 0,
|
75 |
+
"use_sde": false,
|
76 |
+
"sde_sample_freq": -1,
|
77 |
+
"_current_progress_remaining": 0.0,
|
78 |
+
"ep_info_buffer": {
|
79 |
+
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/wjDgCXX9L+UhpRSlIwBbJRLMowBdJRHQKQJd7KJVKh1fZQoaAZoCWgPQwiQ9dTqqwsDwJSGlFKUaBVLMmgWR0CkCSfPw/gSdX2UKGgGaAloD0MI0qjAyTZw+7+UhpRSlGgVSzJoFkdApAjwVZcLSnV9lChoBmgJaA9DCCHmkqrtZvu/lIaUUpRoFUsyaBZHQKQIvujynUF1fZQoaAZoCWgPQwjDg2bXvRXyv5SGlFKUaBVLMmgWR0CkClwr1/UfdX2UKGgGaAloD0MIW7Iqwk0G87+UhpRSlGgVSzJoFkdApAoMYqG1yHV9lChoBmgJaA9DCDVAaahRiPW/lIaUUpRoFUsyaBZHQKQJ1PtUn5V1fZQoaAZoCWgPQwjDnQsjvajwv5SGlFKUaBVLMmgWR0CkCaOE/SpjdX2UKGgGaAloD0MIqoHmc+62BsCUhpRSlGgVSzJoFkdApAtGPq9oOHV9lChoBmgJaA9DCLPPY5Rn/gDAlIaUUpRoFUsyaBZHQKQK9n6Eal11fZQoaAZoCWgPQwgiOZm4VdD8v5SGlFKUaBVLMmgWR0CkCr9TP0I1dX2UKGgGaAloD0MIfhmMEYlC/L+UhpRSlGgVSzJoFkdApAqN5Y5ksnV9lChoBmgJaA9DCB5v8lt08vW/lIaUUpRoFUsyaBZHQKQMJUNrj5t1fZQoaAZoCWgPQwj44LVLG24AwJSGlFKUaBVLMmgWR0CkC9VvVEuydX2UKGgGaAloD0MIIa0x6IQQ9b+UhpRSlGgVSzJoFkdApAueEM9bHXV9lChoBmgJaA9DCE+y1eWUoADAlIaUUpRoFUsyaBZHQKQLbMTN+sp1fZQoaAZoCWgPQwj0wMdgxWn6v5SGlFKUaBVLMmgWR0CkDRMPz4DcdX2UKGgGaAloD0MIaMpOP6iL87+UhpRSlGgVSzJoFkdApAzDYf4h2XV9lChoBmgJaA9DCP0xrU1j+/i/lIaUUpRoFUsyaBZHQKQMjBBzFMt1fZQoaAZoCWgPQwjekbHa/P/3v5SGlFKUaBVLMmgWR0CkDFrhzeXSdX2UKGgGaAloD0MIyhe0kIDxAcCUhpRSlGgVSzJoFkdApA4Ej1PFenV9lChoBmgJaA9DCOjewyXHXfO/lIaUUpRoFUsyaBZHQKQNtNfPX051fZQoaAZoCWgPQwjw4CcOoN/xv5SGlFKUaBVLMmgWR0CkDX1jy4FzdX2UKGgGaAloD0MIuvjbniCx+r+UhpRSlGgVSzJoFkdApA1L6LwWnHV9lChoBmgJaA9DCKCM8WH2cv2/lIaUUpRoFUsyaBZHQKQO4dat9x91fZQoaAZoCWgPQwh1sP7PYf78v5SGlFKUaBVLMmgWR0CkDpLC3w1BdX2UKGgGaAloD0MIGsIxy56kAMCUhpRSlGgVSzJoFkdApA5b/yXlbXV9lChoBmgJaA9DCJgTtMnhE/C/lIaUUpRoFUsyaBZHQKQOKrJbMX91fZQoaAZoCWgPQwjHuriNBnDwv5SGlFKUaBVLMmgWR0CkD77Lt/nXdX2UKGgGaAloD0MIrI2xE14iAsCUhpRSlGgVSzJoFkdApA9vJkoWpXV9lChoBmgJaA9DCFHc8Sa/hfK/lIaUUpRoFUsyaBZHQKQPN7di2Dx1fZQoaAZoCWgPQwjOwwlMp3Xvv5SGlFKUaBVLMmgWR0CkDwZtm+TNdX2UKGgGaAloD0MIxvzc0JTd/r+UhpRSlGgVSzJoFkdApBCjhJiAlXV9lChoBmgJaA9DCNF6+DJRhPe/lIaUUpRoFUsyaBZHQKQQU8BdUsF1fZQoaAZoCWgPQwjij6LO3MPyv5SGlFKUaBVLMmgWR0CkEBxiobXIdX2UKGgGaAloD0MIVI7J4v7j/b+UhpRSlGgVSzJoFkdApA/rFOwgT3V9lChoBmgJaA9DCJbtQ95ytQHAlIaUUpRoFUsyaBZHQKQRft7a7Ep1fZQoaAZoCWgPQwgrFVRU/Urxv5SGlFKUaBVLMmgWR0CkES8qOLiudX2UKGgGaAloD0MIhPQUOUQc/L+UhpRSlGgVSzJoFkdApBD320zCUHV9lChoBmgJaA9DCHRd+MH51PG/lIaUUpRoFUsyaBZHQKQQxqQiiZh1fZQoaAZoCWgPQwg0Tdh+Mob0v5SGlFKUaBVLMmgWR0CkEmmLUCq7dX2UKGgGaAloD0MIiQrVzcVf8L+UhpRSlGgVSzJoFkdApBIZ53Tuv3V9lChoBmgJaA9DCLafjPFhNgHAlIaUUpRoFUsyaBZHQKQR4pVCHAR1fZQoaAZoCWgPQwha2NMOf037v5SGlFKUaBVLMmgWR0CkEbExIre7dX2UKGgGaAloD0MI+dnIdVOK8b+UhpRSlGgVSzJoFkdApBNjEUCaJHV9lChoBmgJaA9DCBDmdi/3yfu/lIaUUpRoFUsyaBZHQKQTFBZ6lch1fZQoaAZoCWgPQwim7V9ZaVL4v5SGlFKUaBVLMmgWR0CkEt1jI7vHdX2UKGgGaAloD0MIgEV+/RBb8r+UhpRSlGgVSzJoFkdApBKsXUH6dnV9lChoBmgJaA9DCGFUUiegCfa/lIaUUpRoFUsyaBZHQKQUvo7muDB1fZQoaAZoCWgPQwhwXpz4akcBwJSGlFKUaBVLMmgWR0CkFG8i4axYdX2UKGgGaAloD0MI4Xt/g/Zq9r+UhpRSlGgVSzJoFkdApBQ4+0PYnXV9lChoBmgJaA9DCKnZA63AUPa/lIaUUpRoFUsyaBZHQKQUCF4cFQl1fZQoaAZoCWgPQwiw/zo3bcbnv5SGlFKUaBVLMmgWR0CkFhr2QGOddX2UKGgGaAloD0MIB7KeWn31/L+UhpRSlGgVSzJoFkdApBXLufEn9nV9lChoBmgJaA9DCG7DKAgen/W/lIaUUpRoFUsyaBZHQKQVlRKpT/B1fZQoaAZoCWgPQwilSSno9pLrv5SGlFKUaBVLMmgWR0CkFWRAjY7JdX2UKGgGaAloD0MIxCPx8nQu77+UhpRSlGgVSzJoFkdApBd+nn+yaHV9lChoBmgJaA9DCAQ91LZhlOq/lIaUUpRoFUsyaBZHQKQXL1QqI8B1fZQoaAZoCWgPQwimDYelgZ/yv5SGlFKUaBVLMmgWR0CkFviD28IzdX2UKGgGaAloD0MImj+mtWnsAMCUhpRSlGgVSzJoFkdApBbH3L3bmHV9lChoBmgJaA9DCDBHj9/b9Om/lIaUUpRoFUsyaBZHQKQY9fjS5RV1fZQoaAZoCWgPQwifxyjPvBzvv5SGlFKUaBVLMmgWR0CkGKba7EpBdX2UKGgGaAloD0MI9n8O8+WF+L+UhpRSlGgVSzJoFkdApBhv+GXXy3V9lChoBmgJaA9DCHvZdtoaUfC/lIaUUpRoFUsyaBZHQKQYP08vEjx1fZQoaAZoCWgPQwj36uOh7+7pv5SGlFKUaBVLMmgWR0CkGl8hTwUhdX2UKGgGaAloD0MIrkoi+yCL/r+UhpRSlGgVSzJoFkdApBoQGpuMuXV9lChoBmgJaA9DCKiN6nQgK/e/lIaUUpRoFUsyaBZHQKQZ2XpGFzx1fZQoaAZoCWgPQwgl6ZrJNxsBwJSGlFKUaBVLMmgWR0CkGah7eEZjdX2UKGgGaAloD0MI0A64rpjRA8CUhpRSlGgVSzJoFkdApBugGhVU/HV9lChoBmgJaA9DCCleZW1TPPq/lIaUUpRoFUsyaBZHQKQbUKfnOjZ1fZQoaAZoCWgPQwgp6sw9JHzyv5SGlFKUaBVLMmgWR0CkGxlPacqfdX2UKGgGaAloD0MI7Q+U2/Z9/r+UhpRSlGgVSzJoFkdApBrnzz3AVXV9lChoBmgJaA9DCFETfT7KiPe/lIaUUpRoFUsyaBZHQKQcfsjVx0d1fZQoaAZoCWgPQwg5e2e0VUn7v5SGlFKUaBVLMmgWR0CkHC7pFCswdX2UKGgGaAloD0MIKc3mcRhM8b+UhpRSlGgVSzJoFkdApBv3x4IKMXV9lChoBmgJaA9DCAtfX+tSIwHAlIaUUpRoFUsyaBZHQKQbxlnyup11fZQoaAZoCWgPQwjFOerouBrrv5SGlFKUaBVLMmgWR0CkHVllK9PDdX2UKGgGaAloD0MIRmCsb2Cy/b+UhpRSlGgVSzJoFkdApB0Jswco6XV9lChoBmgJaA9DCBYW3A944Pq/lIaUUpRoFUsyaBZHQKQc0kcCHRF1fZQoaAZoCWgPQwjIlXoWhPL6v5SGlFKUaBVLMmgWR0CkHKC4J/oadX2UKGgGaAloD0MIYyZRL/i0AsCUhpRSlGgVSzJoFkdApB4zcuanaXV9lChoBmgJaA9DCDquRnal5f2/lIaUUpRoFUsyaBZHQKQd45TZQHl1fZQoaAZoCWgPQwgvv9Nkxhv2v5SGlFKUaBVLMmgWR0CkHaxoh6jWdX2UKGgGaAloD0MI1cvvNJlx/L+UhpRSlGgVSzJoFkdApB169ytFKHV9lChoBmgJaA9DCFacai3MAvm/lIaUUpRoFUsyaBZHQKQfH5GBnSR1fZQoaAZoCWgPQwjPo+L/jqj/v5SGlFKUaBVLMmgWR0CkHs/1xsEadX2UKGgGaAloD0MIUiy3tBpS/r+UhpRSlGgVSzJoFkdApB6YkTpPh3V9lChoBmgJaA9DCOer5GN3QfC/lIaUUpRoFUsyaBZHQKQeZzT4L1F1fZQoaAZoCWgPQwjr/xzmy4v1v5SGlFKUaBVLMmgWR0CkH/Xl8w6AdX2UKGgGaAloD0MIvMtFfCcGAMCUhpRSlGgVSzJoFkdApB+mDUVi4XV9lChoBmgJaA9DCJz9gXLbfgDAlIaUUpRoFUsyaBZHQKQfbqGDcud1fZQoaAZoCWgPQwgfR3Nk5Vf9v5SGlFKUaBVLMmgWR0CkHz0uctoSdX2UKGgGaAloD0MIhSUeUDYlAMCUhpRSlGgVSzJoFkdApCDRQzk6tHV9lChoBmgJaA9DCGB3uvPEcwXAlIaUUpRoFUsyaBZHQKQggXD3ueB1fZQoaAZoCWgPQwj5TWGlggr+v5SGlFKUaBVLMmgWR0CkIEo7/4qPdX2UKGgGaAloD0MIj8cMVMY/9r+UhpRSlGgVSzJoFkdApCAY8jiXIHV9lChoBmgJaA9DCOQR3EjZQgbAlIaUUpRoFUsyaBZHQKQhsk/r0J51fZQoaAZoCWgPQwhyUMJM27/4v5SGlFKUaBVLMmgWR0CkIWJy6tkndX2UKGgGaAloD0MID2JnCp0X+L+UhpRSlGgVSzJoFkdApCErDQ7cPHV9lChoBmgJaA9DCG8QrRVtTv+/lIaUUpRoFUsyaBZHQKQg+Y+jdpJ1ZS4="
|
81 |
+
},
|
82 |
+
"ep_success_buffer": {
|
83 |
+
":type:": "<class 'collections.deque'>",
|
84 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
+
},
|
86 |
+
"_n_updates": 50000,
|
87 |
+
"n_steps": 5,
|
88 |
+
"gamma": 0.99,
|
89 |
+
"gae_lambda": 1.0,
|
90 |
+
"ent_coef": 0.0,
|
91 |
+
"vf_coef": 0.5,
|
92 |
+
"max_grad_norm": 0.5,
|
93 |
+
"normalize_advantage": false
|
94 |
+
}
|
a2c-PandaReachDense-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e101289c14b6243a8f5a08128bcb2b29a9a475b5389c8de0f3e738885703565a
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e0ebe070761afb50d605382805046b93f58904b9e36ac60ca2d71c77a6c131f8
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-PandaReachDense-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f322dbc5ee0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f322dbbded0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676739865712432927, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAlS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lS/VPn18mLs5DxU/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAdm8aP31NrL8mn7U/TdjQv4QQw7+n+DI9KvVAPi0fPD+SKds/wajGPjqoqD/+GLy/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuVL9U+fXyYuzkPFT+C1CA871t8uwYF8TuUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]\n [ 0.41637865 -0.00465351 0.5822635 ]]", "desired_goal": "[[ 0.60326326 -1.3461148 1.4189193 ]\n [-1.631601 -1.5239415 0.04369416]\n [ 0.18843523 0.7348507 1.7122061 ]\n [ 0.38800624 1.3176339 -1.4695127 ]]", "observation": "[[ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]\n [ 0.41637865 -0.00465351 0.5822635 0.00981629 -0.00385069 0.00735534]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAZniivY2kWz2Jy/w96LWrvUU+9DzYO2I+w4EYvsveEL0zMSw9sP3oPQCyCD6wzaY9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0793312 0.05362372 0.12343509]\n [-0.08384305 0.02981485 0.22093141]\n [-0.1489325 -0.03536872 0.04203911]\n [ 0.11376512 0.13349152 0.08144701]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI/wjDgCXX9L+UhpRSlIwBbJRLMowBdJRHQKQJd7KJVKh1fZQoaAZoCWgPQwiQ9dTqqwsDwJSGlFKUaBVLMmgWR0CkCSfPw/gSdX2UKGgGaAloD0MI0qjAyTZw+7+UhpRSlGgVSzJoFkdApAjwVZcLSnV9lChoBmgJaA9DCCHmkqrtZvu/lIaUUpRoFUsyaBZHQKQIvujynUF1fZQoaAZoCWgPQwjDg2bXvRXyv5SGlFKUaBVLMmgWR0CkClwr1/UfdX2UKGgGaAloD0MIW7Iqwk0G87+UhpRSlGgVSzJoFkdApAoMYqG1yHV9lChoBmgJaA9DCDVAaahRiPW/lIaUUpRoFUsyaBZHQKQJ1PtUn5V1fZQoaAZoCWgPQwjDnQsjvajwv5SGlFKUaBVLMmgWR0CkCaOE/SpjdX2UKGgGaAloD0MIqoHmc+62BsCUhpRSlGgVSzJoFkdApAtGPq9oOHV9lChoBmgJaA9DCLPPY5Rn/gDAlIaUUpRoFUsyaBZHQKQK9n6Eal11fZQoaAZoCWgPQwgiOZm4VdD8v5SGlFKUaBVLMmgWR0CkCr9TP0I1dX2UKGgGaAloD0MIfhmMEYlC/L+UhpRSlGgVSzJoFkdApAqN5Y5ksnV9lChoBmgJaA9DCB5v8lt08vW/lIaUUpRoFUsyaBZHQKQMJUNrj5t1fZQoaAZoCWgPQwj44LVLG24AwJSGlFKUaBVLMmgWR0CkC9VvVEuydX2UKGgGaAloD0MIIa0x6IQQ9b+UhpRSlGgVSzJoFkdApAueEM9bHXV9lChoBmgJaA9DCE+y1eWUoADAlIaUUpRoFUsyaBZHQKQLbMTN+sp1fZQoaAZoCWgPQwj0wMdgxWn6v5SGlFKUaBVLMmgWR0CkDRMPz4DcdX2UKGgGaAloD0MIaMpOP6iL87+UhpRSlGgVSzJoFkdApAzDYf4h2XV9lChoBmgJaA9DCP0xrU1j+/i/lIaUUpRoFUsyaBZHQKQMjBBzFMt1fZQoaAZoCWgPQwjekbHa/P/3v5SGlFKUaBVLMmgWR0CkDFrhzeXSdX2UKGgGaAloD0MIyhe0kIDxAcCUhpRSlGgVSzJoFkdApA4Ej1PFenV9lChoBmgJaA9DCOjewyXHXfO/lIaUUpRoFUsyaBZHQKQNtNfPX051fZQoaAZoCWgPQwjw4CcOoN/xv5SGlFKUaBVLMmgWR0CkDX1jy4FzdX2UKGgGaAloD0MIuvjbniCx+r+UhpRSlGgVSzJoFkdApA1L6LwWnHV9lChoBmgJaA9DCKCM8WH2cv2/lIaUUpRoFUsyaBZHQKQO4dat9x91fZQoaAZoCWgPQwh1sP7PYf78v5SGlFKUaBVLMmgWR0CkDpLC3w1BdX2UKGgGaAloD0MIGsIxy56kAMCUhpRSlGgVSzJoFkdApA5b/yXlbXV9lChoBmgJaA9DCJgTtMnhE/C/lIaUUpRoFUsyaBZHQKQOKrJbMX91fZQoaAZoCWgPQwjHuriNBnDwv5SGlFKUaBVLMmgWR0CkD77Lt/nXdX2UKGgGaAloD0MIrI2xE14iAsCUhpRSlGgVSzJoFkdApA9vJkoWpXV9lChoBmgJaA9DCFHc8Sa/hfK/lIaUUpRoFUsyaBZHQKQPN7di2Dx1fZQoaAZoCWgPQwjOwwlMp3Xvv5SGlFKUaBVLMmgWR0CkDwZtm+TNdX2UKGgGaAloD0MIxvzc0JTd/r+UhpRSlGgVSzJoFkdApBCjhJiAlXV9lChoBmgJaA9DCNF6+DJRhPe/lIaUUpRoFUsyaBZHQKQQU8BdUsF1fZQoaAZoCWgPQwjij6LO3MPyv5SGlFKUaBVLMmgWR0CkEBxiobXIdX2UKGgGaAloD0MIVI7J4v7j/b+UhpRSlGgVSzJoFkdApA/rFOwgT3V9lChoBmgJaA9DCJbtQ95ytQHAlIaUUpRoFUsyaBZHQKQRft7a7Ep1fZQoaAZoCWgPQwgrFVRU/Urxv5SGlFKUaBVLMmgWR0CkES8qOLiudX2UKGgGaAloD0MIhPQUOUQc/L+UhpRSlGgVSzJoFkdApBD320zCUHV9lChoBmgJaA9DCHRd+MH51PG/lIaUUpRoFUsyaBZHQKQQxqQiiZh1fZQoaAZoCWgPQwg0Tdh+Mob0v5SGlFKUaBVLMmgWR0CkEmmLUCq7dX2UKGgGaAloD0MIiQrVzcVf8L+UhpRSlGgVSzJoFkdApBIZ53Tuv3V9lChoBmgJaA9DCLafjPFhNgHAlIaUUpRoFUsyaBZHQKQR4pVCHAR1fZQoaAZoCWgPQwha2NMOf037v5SGlFKUaBVLMmgWR0CkEbExIre7dX2UKGgGaAloD0MI+dnIdVOK8b+UhpRSlGgVSzJoFkdApBNjEUCaJHV9lChoBmgJaA9DCBDmdi/3yfu/lIaUUpRoFUsyaBZHQKQTFBZ6lch1fZQoaAZoCWgPQwim7V9ZaVL4v5SGlFKUaBVLMmgWR0CkEt1jI7vHdX2UKGgGaAloD0MIgEV+/RBb8r+UhpRSlGgVSzJoFkdApBKsXUH6dnV9lChoBmgJaA9DCGFUUiegCfa/lIaUUpRoFUsyaBZHQKQUvo7muDB1fZQoaAZoCWgPQwhwXpz4akcBwJSGlFKUaBVLMmgWR0CkFG8i4axYdX2UKGgGaAloD0MI4Xt/g/Zq9r+UhpRSlGgVSzJoFkdApBQ4+0PYnXV9lChoBmgJaA9DCKnZA63AUPa/lIaUUpRoFUsyaBZHQKQUCF4cFQl1fZQoaAZoCWgPQwiw/zo3bcbnv5SGlFKUaBVLMmgWR0CkFhr2QGOddX2UKGgGaAloD0MIB7KeWn31/L+UhpRSlGgVSzJoFkdApBXLufEn9nV9lChoBmgJaA9DCG7DKAgen/W/lIaUUpRoFUsyaBZHQKQVlRKpT/B1fZQoaAZoCWgPQwilSSno9pLrv5SGlFKUaBVLMmgWR0CkFWRAjY7JdX2UKGgGaAloD0MIxCPx8nQu77+UhpRSlGgVSzJoFkdApBd+nn+yaHV9lChoBmgJaA9DCAQ91LZhlOq/lIaUUpRoFUsyaBZHQKQXL1QqI8B1fZQoaAZoCWgPQwimDYelgZ/yv5SGlFKUaBVLMmgWR0CkFviD28IzdX2UKGgGaAloD0MImj+mtWnsAMCUhpRSlGgVSzJoFkdApBbH3L3bmHV9lChoBmgJaA9DCDBHj9/b9Om/lIaUUpRoFUsyaBZHQKQY9fjS5RV1fZQoaAZoCWgPQwifxyjPvBzvv5SGlFKUaBVLMmgWR0CkGKba7EpBdX2UKGgGaAloD0MI9n8O8+WF+L+UhpRSlGgVSzJoFkdApBhv+GXXy3V9lChoBmgJaA9DCHvZdtoaUfC/lIaUUpRoFUsyaBZHQKQYP08vEjx1fZQoaAZoCWgPQwj36uOh7+7pv5SGlFKUaBVLMmgWR0CkGl8hTwUhdX2UKGgGaAloD0MIrkoi+yCL/r+UhpRSlGgVSzJoFkdApBoQGpuMuXV9lChoBmgJaA9DCKiN6nQgK/e/lIaUUpRoFUsyaBZHQKQZ2XpGFzx1fZQoaAZoCWgPQwgl6ZrJNxsBwJSGlFKUaBVLMmgWR0CkGah7eEZjdX2UKGgGaAloD0MI0A64rpjRA8CUhpRSlGgVSzJoFkdApBugGhVU/HV9lChoBmgJaA9DCCleZW1TPPq/lIaUUpRoFUsyaBZHQKQbUKfnOjZ1fZQoaAZoCWgPQwgp6sw9JHzyv5SGlFKUaBVLMmgWR0CkGxlPacqfdX2UKGgGaAloD0MI7Q+U2/Z9/r+UhpRSlGgVSzJoFkdApBrnzz3AVXV9lChoBmgJaA9DCFETfT7KiPe/lIaUUpRoFUsyaBZHQKQcfsjVx0d1fZQoaAZoCWgPQwg5e2e0VUn7v5SGlFKUaBVLMmgWR0CkHC7pFCswdX2UKGgGaAloD0MIKc3mcRhM8b+UhpRSlGgVSzJoFkdApBv3x4IKMXV9lChoBmgJaA9DCAtfX+tSIwHAlIaUUpRoFUsyaBZHQKQbxlnyup11fZQoaAZoCWgPQwjFOerouBrrv5SGlFKUaBVLMmgWR0CkHVllK9PDdX2UKGgGaAloD0MIRmCsb2Cy/b+UhpRSlGgVSzJoFkdApB0Jswco6XV9lChoBmgJaA9DCBYW3A944Pq/lIaUUpRoFUsyaBZHQKQc0kcCHRF1fZQoaAZoCWgPQwjIlXoWhPL6v5SGlFKUaBVLMmgWR0CkHKC4J/oadX2UKGgGaAloD0MIYyZRL/i0AsCUhpRSlGgVSzJoFkdApB4zcuanaXV9lChoBmgJaA9DCDquRnal5f2/lIaUUpRoFUsyaBZHQKQd45TZQHl1fZQoaAZoCWgPQwgvv9Nkxhv2v5SGlFKUaBVLMmgWR0CkHaxoh6jWdX2UKGgGaAloD0MI1cvvNJlx/L+UhpRSlGgVSzJoFkdApB169ytFKHV9lChoBmgJaA9DCFacai3MAvm/lIaUUpRoFUsyaBZHQKQfH5GBnSR1fZQoaAZoCWgPQwjPo+L/jqj/v5SGlFKUaBVLMmgWR0CkHs/1xsEadX2UKGgGaAloD0MIUiy3tBpS/r+UhpRSlGgVSzJoFkdApB6YkTpPh3V9lChoBmgJaA9DCOer5GN3QfC/lIaUUpRoFUsyaBZHQKQeZzT4L1F1fZQoaAZoCWgPQwjr/xzmy4v1v5SGlFKUaBVLMmgWR0CkH/Xl8w6AdX2UKGgGaAloD0MIvMtFfCcGAMCUhpRSlGgVSzJoFkdApB+mDUVi4XV9lChoBmgJaA9DCJz9gXLbfgDAlIaUUpRoFUsyaBZHQKQfbqGDcud1fZQoaAZoCWgPQwgfR3Nk5Vf9v5SGlFKUaBVLMmgWR0CkHz0uctoSdX2UKGgGaAloD0MIhSUeUDYlAMCUhpRSlGgVSzJoFkdApCDRQzk6tHV9lChoBmgJaA9DCGB3uvPEcwXAlIaUUpRoFUsyaBZHQKQggXD3ueB1fZQoaAZoCWgPQwj5TWGlggr+v5SGlFKUaBVLMmgWR0CkIEo7/4qPdX2UKGgGaAloD0MIj8cMVMY/9r+UhpRSlGgVSzJoFkdApCAY8jiXIHV9lChoBmgJaA9DCOQR3EjZQgbAlIaUUpRoFUsyaBZHQKQhsk/r0J51fZQoaAZoCWgPQwhyUMJM27/4v5SGlFKUaBVLMmgWR0CkIWJy6tkndX2UKGgGaAloD0MID2JnCp0X+L+UhpRSlGgVSzJoFkdApCErDQ7cPHV9lChoBmgJaA9DCG8QrRVtTv+/lIaUUpRoFUsyaBZHQKQg+Y+jdpJ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
Binary file (619 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -1.905506354337558, "std_reward": 0.38480578837776785, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-18T17:51:20.240446"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:566d40a6dae3142aa2b1ce0e28cb35db286cc239487c36823bb7240820082996
|
3 |
+
size 3056
|