--- library_name: transformers license: apache-2.0 base_model: imrajeshkr/distilhubert-finetuned-speech_commands tags: - generated_from_trainer datasets: - audiofolder metrics: - precision - recall - f1 model-index: - name: distilhubert-finetuned-speech_commands results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: default split: test args: default metrics: - name: Precision type: precision value: 0.9759184555734861 - name: Recall type: recall value: 0.9749126053876208 - name: F1 type: f1 value: 0.9749296122020006 --- # distilhubert-finetuned-speech_commands This model is a fine-tuned version of [imrajeshkr/distilhubert-finetuned-speech_commands](https://huggingface.co/imrajeshkr/distilhubert-finetuned-speech_commands) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0934 - Precision: 0.9759 - Recall: 0.9749 - F1: 0.9749 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:| | 0.2713 | 1.0 | 1216 | 0.2523 | 0.9172 | 0.9267 | 0.9166 | | 0.137 | 2.0 | 2432 | 0.1119 | 0.9685 | 0.9667 | 0.9664 | | 0.0295 | 3.0 | 3648 | 0.0977 | 0.9726 | 0.9703 | 0.9701 | | 0.0037 | 4.0 | 4864 | 0.0956 | 0.9743 | 0.9733 | 0.9732 | | 0.052 | 5.0 | 6080 | 0.0934 | 0.9759 | 0.9749 | 0.9749 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.2.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0