aisyahhrazak
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,9 +1,11 @@
|
|
1 |
---
|
2 |
language:
|
3 |
- ms
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
##
|
7 |
|
8 |
# Overview
|
9 |
This model is a fine-tuned checkpoint of [Deberta-V3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall). It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment.
|
@@ -16,7 +18,4 @@ The easiest way to use the model for single predictions is Hugging Face's [senti
|
|
16 |
from transformers import pipeline
|
17 |
sentiment_analysis = pipeline("sentiment-analysis",model="malaysia-ai/deberta-v3-xsmall-malay-sentiment")
|
18 |
print(sentiment_analysis("saya comel"))
|
19 |
-
```
|
20 |
-
|
21 |
-
|
22 |
-
|
|
|
1 |
---
|
2 |
language:
|
3 |
- ms
|
4 |
+
tags:
|
5 |
+
- sentiment
|
6 |
---
|
7 |
|
8 |
+
## Malay-Language Sentiment Classification
|
9 |
|
10 |
# Overview
|
11 |
This model is a fine-tuned checkpoint of [Deberta-V3-xsmall](https://huggingface.co/microsoft/deberta-v3-xsmall). It enables binary sentiment analysis for Malay-language text. For each instance, it predicts either positive (1) or negative (0) sentiment.
|
|
|
18 |
from transformers import pipeline
|
19 |
sentiment_analysis = pipeline("sentiment-analysis",model="malaysia-ai/deberta-v3-xsmall-malay-sentiment")
|
20 |
print(sentiment_analysis("saya comel"))
|
21 |
+
```
|
|
|
|
|
|