File size: 5,236 Bytes
79725c2
 
 
711c30d
97a28b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9060257
 
 
 
 
711c30d
 
9060257
 
 
 
 
711c30d
9060257
711c30d
9060257
711c30d
 
 
 
 
9060257
 
 
 
 
 
 
 
711c30d
9060257
 
 
 
 
 
 
 
 
 
3ac3c0e
9060257
3ac3c0e
9060257
 
 
 
 
 
97a28b3
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
---
language:
- tr
- en
license: apache-2.0
datasets:
- malhajar/meditron-tr
model-index:
- name: Mistral-7B-v0.2-meditron-turkish
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 59.56
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 81.79
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 60.35
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 66.19
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 76.24
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 35.94
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=malhajar/Mistral-7B-v0.2-meditron-turkish
      name: Open LLM Leaderboard
---

# Model Card for Model ID

<!-- Provide a quick summary of what the model is/does. -->
Mistral-7B-v0.2-meditron-turkish is a finetuned Mistral Model version using Freeze technique on Turkish Meditron dataset of [`malhajar/meditron-7b-tr`](https://huggingface.co/datasets/malhajar/meditron-tr) using SFT Training.
This model can answer information about different excplicit ideas in medicine in Turkish and English

### Model Description

- **Finetuned by:** [`Mohamad Alhajar`](https://www.linkedin.com/in/muhammet-alhajar/) 
- **Language(s) (NLP):** Turkish,English
- **Finetuned from model:** [`mistralai/Mistral-7B-Instruct-v0.2`](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2)

### Prompt Template For Turkish Generation
```
### Kullancı:
```
### Prompt Template For English Generation
```
### User:
```

## How to Get Started with the Model

Use the code sample provided in the original post to interact with the model.
```python
from transformers import AutoTokenizer,AutoModelForCausalLM
 
model_id = "malhajar/Mistral-7B-v0.2-meditron-turkish"
model = AutoModelForCausalLM.from_pretrained(model_name_or_path,
                                             device_map="auto",
                                             torch_dtype=torch.float16,
                                             revision="main")

tokenizer = AutoTokenizer.from_pretrained(model_id)

question: "Akciğer kanseri nedir?"
# For generating a response
prompt = '''
### Kullancı:
{question} 
'''
input_ids = tokenizer(prompt, return_tensors="pt").input_ids
output = model.generate(inputs=input_ids,max_new_tokens=512,pad_token_id=tokenizer.eos_token_id,top_k=50, do_sample=True,
        top_p=0.95)
response = tokenizer.decode(output[0])

print(response)
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_malhajar__Mistral-7B-v0.2-meditron-turkish)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |63.34|
|AI2 Reasoning Challenge (25-Shot)|59.56|
|HellaSwag (10-Shot)              |81.79|
|MMLU (5-Shot)                    |60.35|
|TruthfulQA (0-shot)              |66.19|
|Winogrande (5-shot)              |76.24|
|GSM8k (5-shot)                   |35.94|