ppo v1
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +95 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 243.16 +/- 67.85
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f870db7be50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f870db7bee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f870db7bf70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f870db80040>", "_build": "<function ActorCriticPolicy._build at 0x7f870db800d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f870db80160>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f870db801f0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f870db80280>", "_predict": "<function ActorCriticPolicy._predict at 0x7f870db80310>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f870db803a0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f870db80430>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f870db804c0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f870db77d20>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAEXxrDWIyb90gLCjpq7S9aR2zfrNxsDd20ymOESAqj78NxioAXnJHusafMcS9ajqb5uJguAsmE9aWduEw5U8I1BDtQZMkwqyeBIIDip9/2NoMxK53qV6MlXkxxt+E13IOwWigsRD3EHEl3q2NumGMpxLtfQZAQ5SYJOP2PJVcFPUDUnKV0Rvt8NWBiLK1Smk/LCD2ja80ejb38r0I93pEjGYGdAoj7x080pY1FgcsDXvf0nGis/tDJkWNBJKLNmt8LQYXJFDOHJomFhNupmFsfjjMnEqVoe10NTexZifOudzWND1OdqvbB1/J54Sg4YiRzcFNyQwHCNygI8WrVA9eq2diOOk66eZ0KePT1psaTmot6sIxu7EfpONO/DoadgA5eZD/siR2sbX21GBg6d9XY5Oaqz4mUVdLL+4lf8cuFxgKt++61IsS2l7yhGRin7R9WH1kwhwlwyfG44Tmw1yTye4jDjUagkb7NuzyMdcYeip86OYSW77M4zUrxOEMbCJLLbUNIUJroTrzxs/8XjpTTuzidqaevfMTKSG4SaKiPlDIbcnltO7KpKfCDQU5kgR8YgSITXL7gvZeFgEvkJUpJjvjUnqGe+vz2btbpKPjw7+knNLup949FrKNTyySB5GXiBiEnE9Z2AVMqWsU2OskwnlX8Mk5JWxR/z0jL+beV2ST+srsIdeyO9HrcE9siK5Xvhp3Yj5DSrrXKTZxBbNg2u2jgGtqESTEmNCjb9BIzVY9NbSC8iBGQPdo+gqspTWpQGAwrRJg1CF1N8U27gE0i4wT7LGhOIjrqoR0zkDuUI+OvvVk80JlgYM2bVeKoBVlWLiutNVlloBMhI8yh66mM5/Zy0zp46zVASxWwFuCG5AlUmeUHShGQfCOoD+WqzjsiaMPwbevWkAO1V+q7srkyE5eO1cJ1TqfGMbBJtU+iiVD/E9xhjKBm1M5BE3K1Ei8ZqWGxKfNCSySALc/WwzZREYwa0yg2Gkts7OmIq3rtYqK8WAGt3MgNS/JPmfmHJ9skbmo8bUu4hBYUhIF6ZEHVazHJY8VUnufP6mqtpbqCu8oeBg0VjF5+7Mg9sKvlgJQnA3tIN2I1tHJ4Qtlz7CQFHkliCfOXiUdbiBniOajsLXb3M+zZVGqTwobol8wnCvtqtTWEA/klZNY367iA+0SIo88Y0yUxGrF/PXw4VHRwfI0jYVXRi7Yh5QXj2cKVs5gcnIBPyM3UUzrVttoZZFVYqNEjQyLc4bN0pInqA+HsDXd79Jihd30p7MbZnHbibLvMufek51Z0sahBJbuqst2flpoggkQfq8MOmO4vBwGHYrDLGEXVhRRO3FDAQ76dI6y/nmKkX6qhZO2neMXim/hM4wB/kucl+y3Pg9lFALAdAACS0Fil7GXSWQQpuI9bBvtzaR4VNYfJKXFATlo/9xJ+4aVpHGUFH86fZ4xfGkWOkfyMRYw/PmfjfFYeJ9IavkiBXV/0uNyXFcEZ9dkCm13r9NUbNksasPlQsNmYfBPT6QGLFsLLIqQDIxs/1Ik2toKd64w+3xTjqSpehC5QrKSGxKagdlgFWH5vipCoYPJRI6+J61qNsLUMNMmUe9mhOd0glHxdL6bxh6GF8HK3KnDkFTxHC6bXYJ4v4CEZ59yJE9YGUosav8HiGNn6tryI5KxVSYE+tyFAeOtaBjSJxBg1PwxsRnPde4sutaSfEljSb+77tBbSPAgZVZ3RgmB5YzqWVbuVbnM4COItwyEihwU+SPhs3SgGuMTEeSI/6/I5J4Figmhqygs3vDmgv3Q2nFQyfx8REDCLwG1F+WKNBuu1G5HWv3KSK8uS7BhXQ8s982HY2ErcXPrWzfhbMAWNNn0mNezsRGLteOEfWEgVKdK61djkpfGuR2uRKJoh/BN5GtugkCs6SIXE7VNvWoFCBkm58ZzikM6w+1+EhTukSQ7UUVzeP0H9eOD3HMrOxbDPugKCFuNy8SOEV+SJuCgQC5savwtEj7q2D0oNzGVJ+elbvJIINZeMUxWA34VLVA3wgRgFyKx67NoPPu6g7RrVMVuMgA6+jPF4gpLiizTYzm++ynQLJUAxuPLBf4rLp3+seectvS3wTIjkikxSif1RfqUXdHDKIJPvRQR+pS8loFyUj5CfyQRkC0jI/XaVfaV5r/IpJguqachKb85tUr8+k50lEg3gRf1PXU3QhvFdsirzyyA1PCCsrTL/Wu6MSUFCPzNsHZloUyOp7nZezaFHMuXGD6SrlrqKCNvwAqrZu2Oc4zmCDIucBhMpf/jc9/zIQXivvoD5JXW5vVoVTPY/hGSG0fF5xE7rtHM/U9esWVHvahblc/E1mwIPRozqqBNn5fWSWfJ56MA9ssleZTIu7Sylt4NntBc1QqKW4XTxiQeloTpV6LCjRgYlmi+i9N6JZkYa0uqmlv7AdUMasgjtuH9kFb2s1m9sZyXVv+B2AJwdDsGvNiYIUobd254IfqvCrDPx+j/CEpv6oBcxaqARcPR1bFuTnmDGvNi4qk83v6dKxcR3V93e0yoArxO8W1ZNETPkjBD/NW5pbbXfn8qnk3ZKvJn3hGuctJg0TN0INLUyjcu9OBDXbm61ehUwYUV0HaF833qjV5dOK2K2avCbf+snnpq8oGPCaurAWNXASJlUYY+zpaCOtT1AWQfhyMb23gsT6q9J6fYC3LadKg8qNOTZJ0v7qtHVFjaiTbyBaDyFBlGZN/gC5O1bFPcjUP/i8AWvlNCoimJVVs3Ay/bM3G9miS8H5UtVMpNGRLQt9NLfDCnvjJgD+7RFGLVMZzhOdqTnhGmc+UKCFUjsUltPORzL2VLNMSMPUZIq2xx+tYMEFcL2LuboxT+GNR8eWIY9vycGI54JDv8R/wiiQ+90lsz7ilIOpPH20epYRrJIjDrOgZXjASoDJEEMgb8orZ+HmUDqmrJpa/roQkXO8a/nx95+3zEsrNYCwbs52LWKYOmskxNhnFDXCieKmx+PMGivzsKHp+4zwWjVAqFz4lQFXC+BAwS/NvTIV8B+/VO3Ou7IFM9Wy/hIdyaF6yY161iPhsDcoqt0fi822QaBAtXSB7oJ+j3rLNiUCOZnaFrhtGkO0JljfCIet+xcAr5qQUU1HhLo9F47P3bP4pJuYpbHXuR9FgMLDZwwv8Ynvmbb0sokg4tXRKTNO+7ThEYTACQdJGIInWSW75qlO9J9klVhedZdLUa5vYWBebuSAv+zaBh4g0FieK0jCnD1uv2IGNQIYMeQIdGnI6HwxLVGRd/Oc9PGBak0H3iMlU7AKYVo3UQ6S3kVXolQT4NVH9IUSDKKkTNUfyt9pAY2/X9YqJCo/SYZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAPyAfXTsud7i6+srnOGF47kMhurtGFrVIxwo4qCVjGy6INIjMuT3xJguvLDKdcuK4LFKZztaaW/Q72+INMqcP5FNxAlxNwmQNI3FVfbTp5jlTyRVIQWJDGu3VYEeTmctzi60bix9TbgO+YzRSG+FLuefxDA2rEPPhHfaBVQeGssBPJPBG7winLxgdeWm3bGvm9LZz+v7zsBBpMFjwJ0u51IgMjOrAh76EZVCBc9W5UsVU5athzhesbeepJuDdAwKr01IvyTbqERwBFTByXzse5ClCOFEyxvkIiiZkEeh8IjGrrKocjvqo/1PMadbiC3BbPc1exlgwNA+bgp1rxbEH92Jhg+RC/QOJDico6uEIXStbf10IeYshM8gWwdbYqPgyNHdcdJwy02mkNrny1+rwE/j4KCV42WUTgvnMn69G5GuQ44enR7i+wYk61Dj6ItnxrwRE77om8c0FAGJm4kKnimiRaE+iM0hPb9sh4svwi36qkD+h1fWIkFs/wOKvMdr4aewYs0yar0Br2gU55d8CI33fjx0HWuyGC4baTFPUtrRJob9kNO7cizCFpKKDuXFHwZbxo4kxLDQMHR2uCGgQlOy9eY3dtiOzWZds9ypU3wETaxWZp+0qAjF7jC80S5WpA8Y16+xqjUPsKDHqEJOORfLQ26aIZ0THMOiufe87mEg6On/KR83ztT8BWn+ODMHgJ+ryRaA5yU8dJqiiCQQmbTCc6pW21JdZVhnmlAjWnYaa/ONJA+XiVuErlco0ZFKOUuoJZ+/fHcD7rgM74Xw0yi5xzeNkQb7Xx3gscOd+zNJAMK7IhhojCBrBPNcXZfKptbTPbEg09+6EoLqUUz4jvlKFIa/Qq90Obt4iQUeeNK3OQnUG/cejRalVA++BSfq+Pj/534Cx6l2Yga/4PAvfYHm244mkDMR0xSgMMtmGPdhK7AeC9rHjPI/4534OP5osodPoU4GeOPdCy0h2fNX4hFcXtgPx3cFHzq25ynHt5AhuJnW5ssfVclCAH18Hh4FmefPdUITsSmX6Vd20o6eST7IKHaDs98fMWcvidLwnzYSdWbCCKE4StKUbzhA/0ugtsZa4ur+hPpXbZkIld25ylcAw/W15YInnQJ20+F2k4QD+3a0e//WRacnFk8SvCYCiuIKcKWCQGrYbBxGJUPugcvHTyPARXzSaoXgwBv+1lsNrFEiCdzjDCda2fm5aQNci2FnLVKNBr92tAsB9Bao6XRyaajjmAMbFd/Fw8Ao2NA7JxM0dDVFGHyM5z+fInhew6Nv+o964JsyVhZY4Dzfj3tt6cNRlJoi3bGV3yi5pzxNuPtAEi8YJKz6C8KC9/dJxMFfcawthh1vyM6OjE/ZKW9lOTSODOskJ77frOgD86ODyw4DhIuA+8+2HFKiUB/owY+SSTHhDuFcSZ4hRpzcRSlJ31xD+Bq/temTbhG6EuDRnfuOhpmNVScIY81E1oJf4BKS5AwQ4ZyrpmozdxQr4CbHGBMk6PTXSc0TUYGlDz7tcZ8f3SesvTysb2ZenwiIKTVjFMEuopUyB+H3cEEy2jGqosCu3TKbJFd8Nt0QZo5N0QJz8SuLc8Ye7j97LGyQTPh1z4B8czUhFVZnAZy1JYH3Rc3Q80qx9k84XoA78wmXikJN01qP/VyTRka7Mt6qEsXojuy+SGU8ioQ/oVV5HbN3BGx3xe8oSiUddalSrDg0rWUxhjpWrJAEXr39ALuMTfz4h5Ej+Fq+/1rgsoBWqGJI1lDWGhZIREQd/50LP5BVd5jvhxEZ/NTD3bj39nBzx7bPEDKOPEAdG9v8MieOXjDGbKtazejj5jHLFz1lJdtlH0DAVlvzOVIpLGECd0jVnhwLlDW8ZTCiEYfo63q+DsT4x6EzdMZAG20+KqMt56aw6J+4U6a8B7bxfppLY1YucVOlbmc9KR3KiY23bYsSw1WmoKAwKNZcKsqhEAwS7L+i/2RR2VwHKjIKIDqNdBx/ycp3V0P7Qot4TOMT9sAIcttaahcpZ5JrcJfdyIPcSt8FQt+CiwbCPc8hVxWrBJf9WUzxlrlg61FbIERB1WzF6LatriLsesBFDMzy4SB767REXPutYAFQu0UzBj4TLdONukxMX2I/evZOOPGRS/S9EiFDVTd5bNKQ7teLYAS2rNAn7zC3ngmGipkHnYX2utPQl+6faZLiVg2CJXXO8YthEN16MNHTYDl86QqNelJg3zyFMBvcXPQ9aFnDTcQoTFUSnm7eBEpEuR4wVh6RiZ90E3lIgKJLOf1MuihrloZVd0a1RfJdRvJRcczvbu4jSvD8bVQkB6SlWjrBVFBLHTQx1Mn9LOEuSC/yBwKMw/d51oDm2zNX6PFaUivic8NBxWalATGiKXXoIzJi9MyrMApLB0IVgtu+Vi6qCaVrkI2aqtll4Q85LgXLQTT/HQMm2v/vbfbedE68Uqzz3w7r12UfgbcW4bxEbenlTX0OirmHuWk4KqW/qj8FnBbiD3RWRoMqwQ+svi8A/ht/At+LWopS1OEBJwDGWJTKvmgYiF0f6mrxN+ks/WaesYD3NagVjnSP8kT5kxR0/QnvlbtcHBV4FsAcFBpNnv0lfkzv6OkKu2m7vOvD2phFXxf6cCk9x1bxHq/3eUpAKgIRZkYevsYHRdzD0GI07Vvu4XLv7mlD56TX+tBNl3cK3s22zzRBr3GRq/WcsmA2gaOTFvT3QCivs4UImkJF5N5on6wPajYzymc2V7gMUhIWKjk2mVNhxt/2mr716WN4hs4tbrRGjuHYtyCp3xHHsgPVQPICzC/l/iMifVRCm+EgTTaKHaZva7c8iDVD5UOrDjmgpWNyVpRAphTw58ZMfvTq3YFUIqfQx9N7fGKBUpssuToC+blDgUjJbQF8OBzsgN/rmw1jLNvRqSD3vo6lh4JSlaaj/lx0bidC3bBiZLQ0Oi2QW/Sg4z0dQSRT8QOLAP3VCwXNTLIJoGQRsRlKxFhYdbUKx5iKF2sg9DzRRNlzFiNdJRRMlvwYJscbSxHkzfc+ZThxM/Ud0z1Zopzo+N7mzJfQFvcQQWmnArQcK+caeRQlEOltSyvm6tdItRUg9rBSasSe5EeEhwzLIJ2MvM9tI7l4Q6dWYWRvf7ahu+bxdi8aZngIBsFywR6kcmb2unlTD6i20qvVLNVe4AjlVpFcU083iNbSHZBYGVDp8quWuIoJNgbPabTJViSAyyf+kV+pH44saDU0TRneSL4YaEwEACIHWx39qF3MZaqq60d7JWnxohnbiVn6CRotLX+932aZGwerkqNYJ3ynesFJMBymCfjHecGw99eXYs2h6KR/qoq+QZYJTM5BvlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 501760, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674006140691991116, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEYXLz6FPp48wuUbvkw0+L3yN9a8lxWcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvALRk7IfcUCUhpRSlIwBbJRL4owBdJRHQIzqTdDYywh1fZQoaAZoCWgPQwj1ukVgLCxvQJSGlFKUaBVL1GgWR0CM9XdgOSW7dX2UKGgGaAloD0MIBwySPq1fbkCUhpRSlGgVTSoCaBZHQIz8yAlOXVt1fZQoaAZoCWgPQwjW477Vug5xQJSGlFKUaBVNFQFoFkdAjP8rBbfP5nV9lChoBmgJaA9DCOT1YFK8u3JAlIaUUpRoFUvoaBZHQI0BK3gDRtx1fZQoaAZoCWgPQwh4mWGjrDs+QJSGlFKUaBVLxGgWR0CNAstcOby6dX2UKGgGaAloD0MIkbkyqDZsb0CUhpRSlGgVS9RoFkdAjQShLwnYx3V9lChoBmgJaA9DCBJPdjOju0pAlIaUUpRoFUu3aBZHQI0GLlNlAeJ1fZQoaAZoCWgPQwgCZVOu8FdxQJSGlFKUaBVLvmgWR0CNB8V/tpmFdX2UKGgGaAloD0MInKOOjusCckCUhpRSlGgVTQgBaBZHQI0TfbdrO7h1fZQoaAZoCWgPQwjr4ctEEeIbQJSGlFKUaBVLfWgWR0CNFGYRdyDJdX2UKGgGaAloD0MIYVRSJ6DfcECUhpRSlGgVTQYBaBZHQI0WjSsr/bV1fZQoaAZoCWgPQwgBUMWN2zNxQJSGlFKUaBVLyWgWR0CNGDxp+MIedX2UKGgGaAloD0MI6dfWTz8hckCUhpRSlGgVTRABaBZHQI0asORT0g91fZQoaAZoCWgPQwipaRfTDJ5xQJSGlFKUaBVL2WgWR0CNHLE6T4cndX2UKGgGaAloD0MI0Oy6t+JRcUCUhpRSlGgVTUkCaBZHQI0jG4Vh1DB1fZQoaAZoCWgPQwiiKTv9oIxNQJSGlFKUaBVLymgWR0CNLiLQ5WBCdX2UKGgGaAloD0MIdhvUfitncUCUhpRSlGgVTRABaBZHQI0xB4dIXj51fZQoaAZoCWgPQwjsoX2s4O5TQJSGlFKUaBVLqGgWR0CNMnR9gF5fdX2UKGgGaAloD0MIjuVd9QAWckCUhpRSlGgVS/hoFkdAjTSXEIgNgHV9lChoBmgJaA9DCPxUFRpIQ3BAlIaUUpRoFU0iAWgWR0CNNyK64Ds/dX2UKGgGaAloD0MI1xNdF34oWkCUhpRSlGgVTegDaBZHQI1DAMUh3aB1fZQoaAZoCWgPQwh47j1c8gdvQJSGlFKUaBVL2GgWR0CNTiSdvsJIdX2UKGgGaAloD0MInzvB/mvib0CUhpRSlGgVS8loFkdAjU/KRU3n6nV9lChoBmgJaA9DCLEXCthOF3BAlIaUUpRoFUvEaBZHQI1RclZ5iVl1fZQoaAZoCWgPQwhnDHOCNutHQJSGlFKUaBVLuWgWR0CNUvU3n6l+dX2UKGgGaAloD0MIbtv3qH8ccUCUhpRSlGgVS+BoFkdAjVT2ilBQenV9lChoBmgJaA9DCJEJ+DXSoHBAlIaUUpRoFUvqaBZHQI1W7QXyiEh1fZQoaAZoCWgPQwguGjIepXNsQJSGlFKUaBVL92gWR0CNWQ2sq8UVdX2UKGgGaAloD0MIyH4WS1GXcECUhpRSlGgVS/RoFkdAjVtJd8iOenV9lChoBmgJaA9DCAkyAiqcw2VAlIaUUpRoFU3oA2gWR0CNcTOFg2IgdX2UKGgGaAloD0MI4bchxqvycUCUhpRSlGgVS89oFkdAjXNClabF0nV9lChoBmgJaA9DCLLWUGovMXFAlIaUUpRoFUv9aBZHQI11dnZkCmx1fZQoaAZoCWgPQwgg1EUKJYtxQJSGlFKUaBVL6GgWR0CNd19XLeQ/dX2UKGgGaAloD0MIkL3e/bGPcUCUhpRSlGgVTb8BaBZHQI18OluWKMx1fZQoaAZoCWgPQwgC8E+pEj9xQJSGlFKUaBVLz2gWR0CNfhuYx+KCdX2UKGgGaAloD0MI8SkAxjPIHECUhpRSlGgVS2loFkdAjYjoK+i8F3V9lChoBmgJaA9DCBhcc0e/83BAlIaUUpRoFUvUaBZHQI2KyClJpWV1fZQoaAZoCWgPQwjWV1cFalBwQJSGlFKUaBVL0mgWR0CNjKdvKlpHdX2UKGgGaAloD0MIc/Vjk3wMbkCUhpRSlGgVTXwCaBZHQI2UlfTkQwt1fZQoaAZoCWgPQwgx0SAFjwdwQJSGlFKUaBVLsWgWR0CNlhUBGQS0dX2UKGgGaAloD0MINxyWBj7hcECUhpRSlGgVS79oFkdAjZezJQtSRHV9lChoBmgJaA9DCBdFD3wMsW5AlIaUUpRoFUvbaBZHQI2ZjqUu+RJ1fZQoaAZoCWgPQwhoXg677wxEQJSGlFKUaBVLt2gWR0CNmyDtgKF7dX2UKGgGaAloD0MIxXWMKy4pbkCUhpRSlGgVS9loFkdAjacOavzOHHV9lChoBmgJaA9DCGywcJJm8XFAlIaUUpRoFUvzaBZHQI2pPvBrN4Z1fZQoaAZoCWgPQwhlGHeDaIU4wJSGlFKUaBVLmmgWR0CNqnrt3OfNdX2UKGgGaAloD0MIrrzkfzKYcUCUhpRSlGgVS/doFkdAjayY51eSjnV9lChoBmgJaA9DCFFsBU1LjHFAlIaUUpRoFUvlaBZHQI2ump2ll9V1fZQoaAZoCWgPQwj2Yb1RK4FyQJSGlFKUaBVL8WgWR0CNsLndO6/ZdX2UKGgGaAloD0MIGcbdINoucECUhpRSlGgVS8FoFkdAjbJRXnyNGXV9lChoBmgJaA9DCN/7G7RXIW9AlIaUUpRoFU0BAWgWR0CNtKgfU4JedX2UKGgGaAloD0MIYOgRo+c/ckCUhpRSlGgVS9FoFkdAjbZx15jYqXV9lChoBmgJaA9DCM9qgT2mAnJAlIaUUpRoFUvGaBZHQI24JwbVBld1fZQoaAZoCWgPQwhZT62+uk1xQJSGlFKUaBVLyGgWR0CNw1mRNh3JdX2UKGgGaAloD0MI5gMCnYnhcECUhpRSlGgVS/NoFkdAjcV3DFZPmHV9lChoBmgJaA9DCD4jERrBL3BAlIaUUpRoFUvtaBZHQI3H2EGqxTt1fZQoaAZoCWgPQwhjCWtj7I9vQJSGlFKUaBVLwGgWR0CNyXoZAIIGdX2UKGgGaAloD0MIqvQTzm4nbkCUhpRSlGgVS+NoFkdAjctqkVN5+3V9lChoBmgJaA9DCE6aBkUzBnBAlIaUUpRoFUvWaBZHQI3NPZ/Tb351fZQoaAZoCWgPQwinIarw5wFvQJSGlFKUaBVL3WgWR0CNzxmpVCHAdX2UKGgGaAloD0MIXTEjvL31cECUhpRSlGgVTQcBaBZHQI3RaxgRbr11fZQoaAZoCWgPQwiyLQPO0npsQJSGlFKUaBVNPQFoFkdAjd3lhoduHnV9lChoBmgJaA9DCPt2EhF+CGFAlIaUUpRoFU3oA2gWR0CN60eZG8VYdX2UKGgGaAloD0MIkL+0qE8CHkCUhpRSlGgVS8BoFkdAjezV14gRsnV9lChoBmgJaA9DCJSFr691gXFAlIaUUpRoFUv4aBZHQI3u52Qnx8V1fZQoaAZoCWgPQwg2BMdl3KpxQJSGlFKUaBVL/WgWR0CN8Tjfek57dX2UKGgGaAloD0MIWp9yTFY9ckCUhpRSlGgVTZgBaBZHQI3/DBTGYKJ1fZQoaAZoCWgPQwhDrWnecf5tQJSGlFKUaBVLvGgWR0COAJ3AVO9GdX2UKGgGaAloD0MIAtcVM4IHcUCUhpRSlGgVTQYBaBZHQI4CwfEGZ/l1fZQoaAZoCWgPQwgJi4o4nSg0QJSGlFKUaBVLxGgWR0COBHVvMr3CdX2UKGgGaAloD0MIX0VGB+SJcUCUhpRSlGgVS9doFkdAjgZB2GIsRXV9lChoBmgJaA9DCAYSFD9G3W9AlIaUUpRoFUvjaBZHQI4IPbh3qzJ1fZQoaAZoCWgPQwiimSfXlB9vQJSGlFKUaBVLx2gWR0COCfgNwzcidX2UKGgGaAloD0MIxVT6CWeJQUCUhpRSlGgVS6hoFkdAjgtaE8JUpHV9lChoBmgJaA9DCH9qvHSTWEDAlIaUUpRoFUuXaBZHQI4Mjg0j1PF1fZQoaAZoCWgPQwhybD1DOGbqv5SGlFKUaBVLo2gWR0CODdQWN3nqdX2UKGgGaAloD0MIY7Mj1beHckCUhpRSlGgVS+doFkdAjhlEqMFUynV9lChoBmgJaA9DCBHHurgNoWpAlIaUUpRoFU3aAWgWR0COHqW3z+WGdX2UKGgGaAloD0MIuTR+4VUXcUCUhpRSlGgVS/VoFkdAjiDgGB4D93V9lChoBmgJaA9DCH/3jhqTynBAlIaUUpRoFUvZaBZHQI4izFdcB2h1fZQoaAZoCWgPQwiRfZBlgQZwQJSGlFKUaBVL42gWR0COJLYao/A1dX2UKGgGaAloD0MIgo3r3/XgcECUhpRSlGgVTQgBaBZHQI4nEQXhwVF1fZQoaAZoCWgPQwjkht9Nt2wcQJSGlFKUaBVLdmgWR0COJ/5dnkDIdX2UKGgGaAloD0MIhUIEHMIkYUCUhpRSlGgVTegDaBZHQI49MEC/47B1fZQoaAZoCWgPQwhtx9Rd2cExQJSGlFKUaBVLuWgWR0COPqMb3oLYdX2UKGgGaAloD0MIBOPg0jEqcECUhpRSlGgVS/NoFkdAjkC8fNiYs3V9lChoBmgJaA9DCPD5YYRw5G5AlIaUUpRoFUvEaBZHQI5CZqO938p1fZQoaAZoCWgPQwiaeXJNAbFvQJSGlFKUaBVLzmgWR0CORCU47zTXdX2UKGgGaAloD0MI/RadLLWMcECUhpRSlGgVS/NoFkdAjkZJ5/smfHV9lChoBmgJaA9DCPzfERVq6nBAlIaUUpRoFUvvaBZHQI5IYnhKlHl1fZQoaAZoCWgPQwjd0JSdPvBwQJSGlFKUaBVL/WgWR0COU7uBtk4FdX2UKGgGaAloD0MItMnhk85yc0CUhpRSlGgVS+poFkdAjlXTJyQxOHV9lChoBmgJaA9DCF+2nbaGpXBAlIaUUpRoFUv0aBZHQI5X7yMDOkd1fZQoaAZoCWgPQwhNEHUfAEJtQJSGlFKUaBVL6mgWR0COWfDKoybhdX2UKGgGaAloD0MIsfhNYeUmcECUhpRSlGgVS99oFkdAjlvZof0VanV9lChoBmgJaA9DCPAZidAIlEhAlIaUUpRoFUuyaBZHQI5dTpu/Dcd1fZQoaAZoCWgPQwj7sUl+xO9tQJSGlFKUaBVL32gWR0COX0TzND+jdX2UKGgGaAloD0MIwELmyuCOcUCUhpRSlGgVTQUBaBZHQI5hh5E+gUV1fZQoaAZoCWgPQwiNt5VeGxRxQJSGlFKUaBVL5mgWR0COY38jzI3jdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2450, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e2e29d878126c1ca8432eadede3fde6ddd6589c95bba06f0dd159bdada531e9
|
3 |
+
size 153423
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f870db7be50>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f870db7bee0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f870db7bf70>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f870db80040>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f870db800d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f870db80160>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f870db801f0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f870db80280>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f870db80310>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f870db803a0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f870db80430>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f870db804c0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f870db77d20>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAEXxrDWIyb90gLCjpq7S9aR2zfrNxsDd20ymOESAqj78NxioAXnJHusafMcS9ajqb5uJguAsmE9aWduEw5U8I1BDtQZMkwqyeBIIDip9/2NoMxK53qV6MlXkxxt+E13IOwWigsRD3EHEl3q2NumGMpxLtfQZAQ5SYJOP2PJVcFPUDUnKV0Rvt8NWBiLK1Smk/LCD2ja80ejb38r0I93pEjGYGdAoj7x080pY1FgcsDXvf0nGis/tDJkWNBJKLNmt8LQYXJFDOHJomFhNupmFsfjjMnEqVoe10NTexZifOudzWND1OdqvbB1/J54Sg4YiRzcFNyQwHCNygI8WrVA9eq2diOOk66eZ0KePT1psaTmot6sIxu7EfpONO/DoadgA5eZD/siR2sbX21GBg6d9XY5Oaqz4mUVdLL+4lf8cuFxgKt++61IsS2l7yhGRin7R9WH1kwhwlwyfG44Tmw1yTye4jDjUagkb7NuzyMdcYeip86OYSW77M4zUrxOEMbCJLLbUNIUJroTrzxs/8XjpTTuzidqaevfMTKSG4SaKiPlDIbcnltO7KpKfCDQU5kgR8YgSITXL7gvZeFgEvkJUpJjvjUnqGe+vz2btbpKPjw7+knNLup949FrKNTyySB5GXiBiEnE9Z2AVMqWsU2OskwnlX8Mk5JWxR/z0jL+beV2ST+srsIdeyO9HrcE9siK5Xvhp3Yj5DSrrXKTZxBbNg2u2jgGtqESTEmNCjb9BIzVY9NbSC8iBGQPdo+gqspTWpQGAwrRJg1CF1N8U27gE0i4wT7LGhOIjrqoR0zkDuUI+OvvVk80JlgYM2bVeKoBVlWLiutNVlloBMhI8yh66mM5/Zy0zp46zVASxWwFuCG5AlUmeUHShGQfCOoD+WqzjsiaMPwbevWkAO1V+q7srkyE5eO1cJ1TqfGMbBJtU+iiVD/E9xhjKBm1M5BE3K1Ei8ZqWGxKfNCSySALc/WwzZREYwa0yg2Gkts7OmIq3rtYqK8WAGt3MgNS/JPmfmHJ9skbmo8bUu4hBYUhIF6ZEHVazHJY8VUnufP6mqtpbqCu8oeBg0VjF5+7Mg9sKvlgJQnA3tIN2I1tHJ4Qtlz7CQFHkliCfOXiUdbiBniOajsLXb3M+zZVGqTwobol8wnCvtqtTWEA/klZNY367iA+0SIo88Y0yUxGrF/PXw4VHRwfI0jYVXRi7Yh5QXj2cKVs5gcnIBPyM3UUzrVttoZZFVYqNEjQyLc4bN0pInqA+HsDXd79Jihd30p7MbZnHbibLvMufek51Z0sahBJbuqst2flpoggkQfq8MOmO4vBwGHYrDLGEXVhRRO3FDAQ76dI6y/nmKkX6qhZO2neMXim/hM4wB/kucl+y3Pg9lFALAdAACS0Fil7GXSWQQpuI9bBvtzaR4VNYfJKXFATlo/9xJ+4aVpHGUFH86fZ4xfGkWOkfyMRYw/PmfjfFYeJ9IavkiBXV/0uNyXFcEZ9dkCm13r9NUbNksasPlQsNmYfBPT6QGLFsLLIqQDIxs/1Ik2toKd64w+3xTjqSpehC5QrKSGxKagdlgFWH5vipCoYPJRI6+J61qNsLUMNMmUe9mhOd0glHxdL6bxh6GF8HK3KnDkFTxHC6bXYJ4v4CEZ59yJE9YGUosav8HiGNn6tryI5KxVSYE+tyFAeOtaBjSJxBg1PwxsRnPde4sutaSfEljSb+77tBbSPAgZVZ3RgmB5YzqWVbuVbnM4COItwyEihwU+SPhs3SgGuMTEeSI/6/I5J4Figmhqygs3vDmgv3Q2nFQyfx8REDCLwG1F+WKNBuu1G5HWv3KSK8uS7BhXQ8s982HY2ErcXPrWzfhbMAWNNn0mNezsRGLteOEfWEgVKdK61djkpfGuR2uRKJoh/BN5GtugkCs6SIXE7VNvWoFCBkm58ZzikM6w+1+EhTukSQ7UUVzeP0H9eOD3HMrOxbDPugKCFuNy8SOEV+SJuCgQC5savwtEj7q2D0oNzGVJ+elbvJIINZeMUxWA34VLVA3wgRgFyKx67NoPPu6g7RrVMVuMgA6+jPF4gpLiizTYzm++ynQLJUAxuPLBf4rLp3+seectvS3wTIjkikxSif1RfqUXdHDKIJPvRQR+pS8loFyUj5CfyQRkC0jI/XaVfaV5r/IpJguqachKb85tUr8+k50lEg3gRf1PXU3QhvFdsirzyyA1PCCsrTL/Wu6MSUFCPzNsHZloUyOp7nZezaFHMuXGD6SrlrqKCNvwAqrZu2Oc4zmCDIucBhMpf/jc9/zIQXivvoD5JXW5vVoVTPY/hGSG0fF5xE7rtHM/U9esWVHvahblc/E1mwIPRozqqBNn5fWSWfJ56MA9ssleZTIu7Sylt4NntBc1QqKW4XTxiQeloTpV6LCjRgYlmi+i9N6JZkYa0uqmlv7AdUMasgjtuH9kFb2s1m9sZyXVv+B2AJwdDsGvNiYIUobd254IfqvCrDPx+j/CEpv6oBcxaqARcPR1bFuTnmDGvNi4qk83v6dKxcR3V93e0yoArxO8W1ZNETPkjBD/NW5pbbXfn8qnk3ZKvJn3hGuctJg0TN0INLUyjcu9OBDXbm61ehUwYUV0HaF833qjV5dOK2K2avCbf+snnpq8oGPCaurAWNXASJlUYY+zpaCOtT1AWQfhyMb23gsT6q9J6fYC3LadKg8qNOTZJ0v7qtHVFjaiTbyBaDyFBlGZN/gC5O1bFPcjUP/i8AWvlNCoimJVVs3Ay/bM3G9miS8H5UtVMpNGRLQt9NLfDCnvjJgD+7RFGLVMZzhOdqTnhGmc+UKCFUjsUltPORzL2VLNMSMPUZIq2xx+tYMEFcL2LuboxT+GNR8eWIY9vycGI54JDv8R/wiiQ+90lsz7ilIOpPH20epYRrJIjDrOgZXjASoDJEEMgb8orZ+HmUDqmrJpa/roQkXO8a/nx95+3zEsrNYCwbs52LWKYOmskxNhnFDXCieKmx+PMGivzsKHp+4zwWjVAqFz4lQFXC+BAwS/NvTIV8B+/VO3Ou7IFM9Wy/hIdyaF6yY161iPhsDcoqt0fi822QaBAtXSB7oJ+j3rLNiUCOZnaFrhtGkO0JljfCIet+xcAr5qQUU1HhLo9F47P3bP4pJuYpbHXuR9FgMLDZwwv8Ynvmbb0sokg4tXRKTNO+7ThEYTACQdJGIInWSW75qlO9J9klVhedZdLUa5vYWBebuSAv+zaBh4g0FieK0jCnD1uv2IGNQIYMeQIdGnI6HwxLVGRd/Oc9PGBak0H3iMlU7AKYVo3UQ6S3kVXolQT4NVH9IUSDKKkTNUfyt9pAY2/X9YqJCo/SYZRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsUdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": "RandomState(MT19937)"
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAPyAfXTsud7i6+srnOGF47kMhurtGFrVIxwo4qCVjGy6INIjMuT3xJguvLDKdcuK4LFKZztaaW/Q72+INMqcP5FNxAlxNwmQNI3FVfbTp5jlTyRVIQWJDGu3VYEeTmctzi60bix9TbgO+YzRSG+FLuefxDA2rEPPhHfaBVQeGssBPJPBG7winLxgdeWm3bGvm9LZz+v7zsBBpMFjwJ0u51IgMjOrAh76EZVCBc9W5UsVU5athzhesbeepJuDdAwKr01IvyTbqERwBFTByXzse5ClCOFEyxvkIiiZkEeh8IjGrrKocjvqo/1PMadbiC3BbPc1exlgwNA+bgp1rxbEH92Jhg+RC/QOJDico6uEIXStbf10IeYshM8gWwdbYqPgyNHdcdJwy02mkNrny1+rwE/j4KCV42WUTgvnMn69G5GuQ44enR7i+wYk61Dj6ItnxrwRE77om8c0FAGJm4kKnimiRaE+iM0hPb9sh4svwi36qkD+h1fWIkFs/wOKvMdr4aewYs0yar0Br2gU55d8CI33fjx0HWuyGC4baTFPUtrRJob9kNO7cizCFpKKDuXFHwZbxo4kxLDQMHR2uCGgQlOy9eY3dtiOzWZds9ypU3wETaxWZp+0qAjF7jC80S5WpA8Y16+xqjUPsKDHqEJOORfLQ26aIZ0THMOiufe87mEg6On/KR83ztT8BWn+ODMHgJ+ryRaA5yU8dJqiiCQQmbTCc6pW21JdZVhnmlAjWnYaa/ONJA+XiVuErlco0ZFKOUuoJZ+/fHcD7rgM74Xw0yi5xzeNkQb7Xx3gscOd+zNJAMK7IhhojCBrBPNcXZfKptbTPbEg09+6EoLqUUz4jvlKFIa/Qq90Obt4iQUeeNK3OQnUG/cejRalVA++BSfq+Pj/534Cx6l2Yga/4PAvfYHm244mkDMR0xSgMMtmGPdhK7AeC9rHjPI/4534OP5osodPoU4GeOPdCy0h2fNX4hFcXtgPx3cFHzq25ynHt5AhuJnW5ssfVclCAH18Hh4FmefPdUITsSmX6Vd20o6eST7IKHaDs98fMWcvidLwnzYSdWbCCKE4StKUbzhA/0ugtsZa4ur+hPpXbZkIld25ylcAw/W15YInnQJ20+F2k4QD+3a0e//WRacnFk8SvCYCiuIKcKWCQGrYbBxGJUPugcvHTyPARXzSaoXgwBv+1lsNrFEiCdzjDCda2fm5aQNci2FnLVKNBr92tAsB9Bao6XRyaajjmAMbFd/Fw8Ao2NA7JxM0dDVFGHyM5z+fInhew6Nv+o964JsyVhZY4Dzfj3tt6cNRlJoi3bGV3yi5pzxNuPtAEi8YJKz6C8KC9/dJxMFfcawthh1vyM6OjE/ZKW9lOTSODOskJ77frOgD86ODyw4DhIuA+8+2HFKiUB/owY+SSTHhDuFcSZ4hRpzcRSlJ31xD+Bq/temTbhG6EuDRnfuOhpmNVScIY81E1oJf4BKS5AwQ4ZyrpmozdxQr4CbHGBMk6PTXSc0TUYGlDz7tcZ8f3SesvTysb2ZenwiIKTVjFMEuopUyB+H3cEEy2jGqosCu3TKbJFd8Nt0QZo5N0QJz8SuLc8Ye7j97LGyQTPh1z4B8czUhFVZnAZy1JYH3Rc3Q80qx9k84XoA78wmXikJN01qP/VyTRka7Mt6qEsXojuy+SGU8ioQ/oVV5HbN3BGx3xe8oSiUddalSrDg0rWUxhjpWrJAEXr39ALuMTfz4h5Ej+Fq+/1rgsoBWqGJI1lDWGhZIREQd/50LP5BVd5jvhxEZ/NTD3bj39nBzx7bPEDKOPEAdG9v8MieOXjDGbKtazejj5jHLFz1lJdtlH0DAVlvzOVIpLGECd0jVnhwLlDW8ZTCiEYfo63q+DsT4x6EzdMZAG20+KqMt56aw6J+4U6a8B7bxfppLY1YucVOlbmc9KR3KiY23bYsSw1WmoKAwKNZcKsqhEAwS7L+i/2RR2VwHKjIKIDqNdBx/ycp3V0P7Qot4TOMT9sAIcttaahcpZ5JrcJfdyIPcSt8FQt+CiwbCPc8hVxWrBJf9WUzxlrlg61FbIERB1WzF6LatriLsesBFDMzy4SB767REXPutYAFQu0UzBj4TLdONukxMX2I/evZOOPGRS/S9EiFDVTd5bNKQ7teLYAS2rNAn7zC3ngmGipkHnYX2utPQl+6faZLiVg2CJXXO8YthEN16MNHTYDl86QqNelJg3zyFMBvcXPQ9aFnDTcQoTFUSnm7eBEpEuR4wVh6RiZ90E3lIgKJLOf1MuihrloZVd0a1RfJdRvJRcczvbu4jSvD8bVQkB6SlWjrBVFBLHTQx1Mn9LOEuSC/yBwKMw/d51oDm2zNX6PFaUivic8NBxWalATGiKXXoIzJi9MyrMApLB0IVgtu+Vi6qCaVrkI2aqtll4Q85LgXLQTT/HQMm2v/vbfbedE68Uqzz3w7r12UfgbcW4bxEbenlTX0OirmHuWk4KqW/qj8FnBbiD3RWRoMqwQ+svi8A/ht/At+LWopS1OEBJwDGWJTKvmgYiF0f6mrxN+ks/WaesYD3NagVjnSP8kT5kxR0/QnvlbtcHBV4FsAcFBpNnv0lfkzv6OkKu2m7vOvD2phFXxf6cCk9x1bxHq/3eUpAKgIRZkYevsYHRdzD0GI07Vvu4XLv7mlD56TX+tBNl3cK3s22zzRBr3GRq/WcsmA2gaOTFvT3QCivs4UImkJF5N5on6wPajYzymc2V7gMUhIWKjk2mVNhxt/2mr716WN4hs4tbrRGjuHYtyCp3xHHsgPVQPICzC/l/iMifVRCm+EgTTaKHaZva7c8iDVD5UOrDjmgpWNyVpRAphTw58ZMfvTq3YFUIqfQx9N7fGKBUpssuToC+blDgUjJbQF8OBzsgN/rmw1jLNvRqSD3vo6lh4JSlaaj/lx0bidC3bBiZLQ0Oi2QW/Sg4z0dQSRT8QOLAP3VCwXNTLIJoGQRsRlKxFhYdbUKx5iKF2sg9DzRRNlzFiNdJRRMlvwYJscbSxHkzfc+ZThxM/Ud0z1Zopzo+N7mzJfQFvcQQWmnArQcK+caeRQlEOltSyvm6tdItRUg9rBSasSe5EeEhwzLIJ2MvM9tI7l4Q6dWYWRvf7ahu+bxdi8aZngIBsFywR6kcmb2unlTD6i20qvVLNVe4AjlVpFcU083iNbSHZBYGVDp8quWuIoJNgbPabTJViSAyyf+kV+pH44saDU0TRneSL4YaEwEACIHWx39qF3MZaqq60d7JWnxohnbiVn6CRotLX+932aZGwerkqNYJ3ynesFJMBymCfjHecGw99eXYs2h6KR/qoq+QZYJTM5BvlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
+
},
|
45 |
+
"n_envs": 1,
|
46 |
+
"num_timesteps": 501760,
|
47 |
+
"_total_timesteps": 500000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1674006140691991116,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAEYXLz6FPp48wuUbvkw0+L3yN9a8lxWcvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.0035199999999999676,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVMxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIvALRk7IfcUCUhpRSlIwBbJRL4owBdJRHQIzqTdDYywh1fZQoaAZoCWgPQwj1ukVgLCxvQJSGlFKUaBVL1GgWR0CM9XdgOSW7dX2UKGgGaAloD0MIBwySPq1fbkCUhpRSlGgVTSoCaBZHQIz8yAlOXVt1fZQoaAZoCWgPQwjW477Vug5xQJSGlFKUaBVNFQFoFkdAjP8rBbfP5nV9lChoBmgJaA9DCOT1YFK8u3JAlIaUUpRoFUvoaBZHQI0BK3gDRtx1fZQoaAZoCWgPQwh4mWGjrDs+QJSGlFKUaBVLxGgWR0CNAstcOby6dX2UKGgGaAloD0MIkbkyqDZsb0CUhpRSlGgVS9RoFkdAjQShLwnYx3V9lChoBmgJaA9DCBJPdjOju0pAlIaUUpRoFUu3aBZHQI0GLlNlAeJ1fZQoaAZoCWgPQwgCZVOu8FdxQJSGlFKUaBVLvmgWR0CNB8V/tpmFdX2UKGgGaAloD0MInKOOjusCckCUhpRSlGgVTQgBaBZHQI0TfbdrO7h1fZQoaAZoCWgPQwjr4ctEEeIbQJSGlFKUaBVLfWgWR0CNFGYRdyDJdX2UKGgGaAloD0MIYVRSJ6DfcECUhpRSlGgVTQYBaBZHQI0WjSsr/bV1fZQoaAZoCWgPQwgBUMWN2zNxQJSGlFKUaBVLyWgWR0CNGDxp+MIedX2UKGgGaAloD0MI6dfWTz8hckCUhpRSlGgVTRABaBZHQI0asORT0g91fZQoaAZoCWgPQwipaRfTDJ5xQJSGlFKUaBVL2WgWR0CNHLE6T4cndX2UKGgGaAloD0MI0Oy6t+JRcUCUhpRSlGgVTUkCaBZHQI0jG4Vh1DB1fZQoaAZoCWgPQwiiKTv9oIxNQJSGlFKUaBVLymgWR0CNLiLQ5WBCdX2UKGgGaAloD0MIdhvUfitncUCUhpRSlGgVTRABaBZHQI0xB4dIXj51fZQoaAZoCWgPQwjsoX2s4O5TQJSGlFKUaBVLqGgWR0CNMnR9gF5fdX2UKGgGaAloD0MIjuVd9QAWckCUhpRSlGgVS/hoFkdAjTSXEIgNgHV9lChoBmgJaA9DCPxUFRpIQ3BAlIaUUpRoFU0iAWgWR0CNNyK64Ds/dX2UKGgGaAloD0MI1xNdF34oWkCUhpRSlGgVTegDaBZHQI1DAMUh3aB1fZQoaAZoCWgPQwh47j1c8gdvQJSGlFKUaBVL2GgWR0CNTiSdvsJIdX2UKGgGaAloD0MInzvB/mvib0CUhpRSlGgVS8loFkdAjU/KRU3n6nV9lChoBmgJaA9DCLEXCthOF3BAlIaUUpRoFUvEaBZHQI1RclZ5iVl1fZQoaAZoCWgPQwhnDHOCNutHQJSGlFKUaBVLuWgWR0CNUvU3n6l+dX2UKGgGaAloD0MIbtv3qH8ccUCUhpRSlGgVS+BoFkdAjVT2ilBQenV9lChoBmgJaA9DCJEJ+DXSoHBAlIaUUpRoFUvqaBZHQI1W7QXyiEh1fZQoaAZoCWgPQwguGjIepXNsQJSGlFKUaBVL92gWR0CNWQ2sq8UVdX2UKGgGaAloD0MIyH4WS1GXcECUhpRSlGgVS/RoFkdAjVtJd8iOenV9lChoBmgJaA9DCAkyAiqcw2VAlIaUUpRoFU3oA2gWR0CNcTOFg2IgdX2UKGgGaAloD0MI4bchxqvycUCUhpRSlGgVS89oFkdAjXNClabF0nV9lChoBmgJaA9DCLLWUGovMXFAlIaUUpRoFUv9aBZHQI11dnZkCmx1fZQoaAZoCWgPQwgg1EUKJYtxQJSGlFKUaBVL6GgWR0CNd19XLeQ/dX2UKGgGaAloD0MIkL3e/bGPcUCUhpRSlGgVTb8BaBZHQI18OluWKMx1fZQoaAZoCWgPQwgC8E+pEj9xQJSGlFKUaBVLz2gWR0CNfhuYx+KCdX2UKGgGaAloD0MI8SkAxjPIHECUhpRSlGgVS2loFkdAjYjoK+i8F3V9lChoBmgJaA9DCBhcc0e/83BAlIaUUpRoFUvUaBZHQI2KyClJpWV1fZQoaAZoCWgPQwjWV1cFalBwQJSGlFKUaBVL0mgWR0CNjKdvKlpHdX2UKGgGaAloD0MIc/Vjk3wMbkCUhpRSlGgVTXwCaBZHQI2UlfTkQwt1fZQoaAZoCWgPQwgx0SAFjwdwQJSGlFKUaBVLsWgWR0CNlhUBGQS0dX2UKGgGaAloD0MINxyWBj7hcECUhpRSlGgVS79oFkdAjZezJQtSRHV9lChoBmgJaA9DCBdFD3wMsW5AlIaUUpRoFUvbaBZHQI2ZjqUu+RJ1fZQoaAZoCWgPQwhoXg677wxEQJSGlFKUaBVLt2gWR0CNmyDtgKF7dX2UKGgGaAloD0MIxXWMKy4pbkCUhpRSlGgVS9loFkdAjacOavzOHHV9lChoBmgJaA9DCGywcJJm8XFAlIaUUpRoFUvzaBZHQI2pPvBrN4Z1fZQoaAZoCWgPQwhlGHeDaIU4wJSGlFKUaBVLmmgWR0CNqnrt3OfNdX2UKGgGaAloD0MIrrzkfzKYcUCUhpRSlGgVS/doFkdAjayY51eSjnV9lChoBmgJaA9DCFFsBU1LjHFAlIaUUpRoFUvlaBZHQI2ump2ll9V1fZQoaAZoCWgPQwj2Yb1RK4FyQJSGlFKUaBVL8WgWR0CNsLndO6/ZdX2UKGgGaAloD0MIGcbdINoucECUhpRSlGgVS8FoFkdAjbJRXnyNGXV9lChoBmgJaA9DCN/7G7RXIW9AlIaUUpRoFU0BAWgWR0CNtKgfU4JedX2UKGgGaAloD0MIYOgRo+c/ckCUhpRSlGgVS9FoFkdAjbZx15jYqXV9lChoBmgJaA9DCM9qgT2mAnJAlIaUUpRoFUvGaBZHQI24JwbVBld1fZQoaAZoCWgPQwhZT62+uk1xQJSGlFKUaBVLyGgWR0CNw1mRNh3JdX2UKGgGaAloD0MI5gMCnYnhcECUhpRSlGgVS/NoFkdAjcV3DFZPmHV9lChoBmgJaA9DCD4jERrBL3BAlIaUUpRoFUvtaBZHQI3H2EGqxTt1fZQoaAZoCWgPQwhjCWtj7I9vQJSGlFKUaBVLwGgWR0CNyXoZAIIGdX2UKGgGaAloD0MIqvQTzm4nbkCUhpRSlGgVS+NoFkdAjctqkVN5+3V9lChoBmgJaA9DCE6aBkUzBnBAlIaUUpRoFUvWaBZHQI3NPZ/Tb351fZQoaAZoCWgPQwinIarw5wFvQJSGlFKUaBVL3WgWR0CNzxmpVCHAdX2UKGgGaAloD0MIXTEjvL31cECUhpRSlGgVTQcBaBZHQI3RaxgRbr11fZQoaAZoCWgPQwiyLQPO0npsQJSGlFKUaBVNPQFoFkdAjd3lhoduHnV9lChoBmgJaA9DCPt2EhF+CGFAlIaUUpRoFU3oA2gWR0CN60eZG8VYdX2UKGgGaAloD0MIkL+0qE8CHkCUhpRSlGgVS8BoFkdAjezV14gRsnV9lChoBmgJaA9DCJSFr691gXFAlIaUUpRoFUv4aBZHQI3u52Qnx8V1fZQoaAZoCWgPQwg2BMdl3KpxQJSGlFKUaBVL/WgWR0CN8Tjfek57dX2UKGgGaAloD0MIWp9yTFY9ckCUhpRSlGgVTZgBaBZHQI3/DBTGYKJ1fZQoaAZoCWgPQwhDrWnecf5tQJSGlFKUaBVLvGgWR0COAJ3AVO9GdX2UKGgGaAloD0MIAtcVM4IHcUCUhpRSlGgVTQYBaBZHQI4CwfEGZ/l1fZQoaAZoCWgPQwgJi4o4nSg0QJSGlFKUaBVLxGgWR0COBHVvMr3CdX2UKGgGaAloD0MIX0VGB+SJcUCUhpRSlGgVS9doFkdAjgZB2GIsRXV9lChoBmgJaA9DCAYSFD9G3W9AlIaUUpRoFUvjaBZHQI4IPbh3qzJ1fZQoaAZoCWgPQwiimSfXlB9vQJSGlFKUaBVLx2gWR0COCfgNwzcidX2UKGgGaAloD0MIxVT6CWeJQUCUhpRSlGgVS6hoFkdAjgtaE8JUpHV9lChoBmgJaA9DCH9qvHSTWEDAlIaUUpRoFUuXaBZHQI4Mjg0j1PF1fZQoaAZoCWgPQwhybD1DOGbqv5SGlFKUaBVLo2gWR0CODdQWN3nqdX2UKGgGaAloD0MIY7Mj1beHckCUhpRSlGgVS+doFkdAjhlEqMFUynV9lChoBmgJaA9DCBHHurgNoWpAlIaUUpRoFU3aAWgWR0COHqW3z+WGdX2UKGgGaAloD0MIuTR+4VUXcUCUhpRSlGgVS/VoFkdAjiDgGB4D93V9lChoBmgJaA9DCH/3jhqTynBAlIaUUpRoFUvZaBZHQI4izFdcB2h1fZQoaAZoCWgPQwiRfZBlgQZwQJSGlFKUaBVL42gWR0COJLYao/A1dX2UKGgGaAloD0MIgo3r3/XgcECUhpRSlGgVTQgBaBZHQI4nEQXhwVF1fZQoaAZoCWgPQwjkht9Nt2wcQJSGlFKUaBVLdmgWR0COJ/5dnkDIdX2UKGgGaAloD0MIhUIEHMIkYUCUhpRSlGgVTegDaBZHQI49MEC/47B1fZQoaAZoCWgPQwhtx9Rd2cExQJSGlFKUaBVLuWgWR0COPqMb3oLYdX2UKGgGaAloD0MIBOPg0jEqcECUhpRSlGgVS/NoFkdAjkC8fNiYs3V9lChoBmgJaA9DCPD5YYRw5G5AlIaUUpRoFUvEaBZHQI5CZqO938p1fZQoaAZoCWgPQwiaeXJNAbFvQJSGlFKUaBVLzmgWR0CORCU47zTXdX2UKGgGaAloD0MI/RadLLWMcECUhpRSlGgVS/NoFkdAjkZJ5/smfHV9lChoBmgJaA9DCPzfERVq6nBAlIaUUpRoFUvvaBZHQI5IYnhKlHl1fZQoaAZoCWgPQwjd0JSdPvBwQJSGlFKUaBVL/WgWR0COU7uBtk4FdX2UKGgGaAloD0MItMnhk85yc0CUhpRSlGgVS+poFkdAjlXTJyQxOHV9lChoBmgJaA9DCF+2nbaGpXBAlIaUUpRoFUv0aBZHQI5X7yMDOkd1fZQoaAZoCWgPQwhNEHUfAEJtQJSGlFKUaBVL6mgWR0COWfDKoybhdX2UKGgGaAloD0MIsfhNYeUmcECUhpRSlGgVS99oFkdAjlvZof0VanV9lChoBmgJaA9DCPAZidAIlEhAlIaUUpRoFUuyaBZHQI5dTpu/Dcd1fZQoaAZoCWgPQwj7sUl+xO9tQJSGlFKUaBVL32gWR0COX0TzND+jdX2UKGgGaAloD0MIwELmyuCOcUCUhpRSlGgVTQUBaBZHQI5hh5E+gUV1fZQoaAZoCWgPQwiNt5VeGxRxQJSGlFKUaBVL5mgWR0COY38jzI3jdWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 2450,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:901b8dc7edaba2f5f00678860ad2ce3f8e9d2896f37a9c1de3feb5546733f98e
|
3 |
+
size 87545
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:99daeb744c40893bbe26e462e54fb9f6744226ee8da6417feba37507fdcac2e1
|
3 |
+
size 43265
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (244 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 243.16163049952326, "std_reward": 67.85185220909764, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-18T02:17:54.382608"}
|