File size: 10,016 Bytes
8b79d57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
import easing_functions as ef
import random
import torch
from torchvision import transforms
from torchvision.transforms import functional as F
class MotionAugmentation:
def __init__(self,
size,
prob_fgr_affine,
prob_bgr_affine,
prob_noise,
prob_color_jitter,
prob_grayscale,
prob_sharpness,
prob_blur,
prob_hflip,
prob_pause,
static_affine=True,
aspect_ratio_range=(0.9, 1.1)):
self.size = size
self.prob_fgr_affine = prob_fgr_affine
self.prob_bgr_affine = prob_bgr_affine
self.prob_noise = prob_noise
self.prob_color_jitter = prob_color_jitter
self.prob_grayscale = prob_grayscale
self.prob_sharpness = prob_sharpness
self.prob_blur = prob_blur
self.prob_hflip = prob_hflip
self.prob_pause = prob_pause
self.static_affine = static_affine
self.aspect_ratio_range = aspect_ratio_range
def __call__(self, fgrs, phas, bgrs):
# Foreground affine
if random.random() < self.prob_fgr_affine:
fgrs, phas = self._motion_affine(fgrs, phas)
# Background affine
if random.random() < self.prob_bgr_affine / 2:
bgrs = self._motion_affine(bgrs)
if random.random() < self.prob_bgr_affine / 2:
fgrs, phas, bgrs = self._motion_affine(fgrs, phas, bgrs)
# Still Affine
if self.static_affine:
fgrs, phas = self._static_affine(fgrs, phas, scale_ranges=(0.5, 1))
bgrs = self._static_affine(bgrs, scale_ranges=(1, 1.5))
# To tensor
fgrs = torch.stack([F.to_tensor(fgr) for fgr in fgrs])
phas = torch.stack([F.to_tensor(pha) for pha in phas])
bgrs = torch.stack([F.to_tensor(bgr) for bgr in bgrs])
# Resize
params = transforms.RandomResizedCrop.get_params(fgrs, scale=(1, 1), ratio=self.aspect_ratio_range)
fgrs = F.resized_crop(fgrs, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
phas = F.resized_crop(phas, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
params = transforms.RandomResizedCrop.get_params(bgrs, scale=(1, 1), ratio=self.aspect_ratio_range)
bgrs = F.resized_crop(bgrs, *params, self.size, interpolation=F.InterpolationMode.BILINEAR)
# Horizontal flip
if random.random() < self.prob_hflip:
fgrs = F.hflip(fgrs)
phas = F.hflip(phas)
if random.random() < self.prob_hflip:
bgrs = F.hflip(bgrs)
# Noise
if random.random() < self.prob_noise:
fgrs, bgrs = self._motion_noise(fgrs, bgrs)
# Color jitter
if random.random() < self.prob_color_jitter:
fgrs = self._motion_color_jitter(fgrs)
if random.random() < self.prob_color_jitter:
bgrs = self._motion_color_jitter(bgrs)
# Grayscale
if random.random() < self.prob_grayscale:
fgrs = F.rgb_to_grayscale(fgrs, num_output_channels=3).contiguous()
bgrs = F.rgb_to_grayscale(bgrs, num_output_channels=3).contiguous()
# Sharpen
if random.random() < self.prob_sharpness:
sharpness = random.random() * 8
fgrs = F.adjust_sharpness(fgrs, sharpness)
phas = F.adjust_sharpness(phas, sharpness)
bgrs = F.adjust_sharpness(bgrs, sharpness)
# Blur
if random.random() < self.prob_blur / 3:
fgrs, phas = self._motion_blur(fgrs, phas)
if random.random() < self.prob_blur / 3:
bgrs = self._motion_blur(bgrs)
if random.random() < self.prob_blur / 3:
fgrs, phas, bgrs = self._motion_blur(fgrs, phas, bgrs)
# Pause
if random.random() < self.prob_pause:
fgrs, phas, bgrs = self._motion_pause(fgrs, phas, bgrs)
return fgrs, phas, bgrs
def _static_affine(self, *imgs, scale_ranges):
params = transforms.RandomAffine.get_params(
degrees=(-10, 10), translate=(0.1, 0.1), scale_ranges=scale_ranges,
shears=(-5, 5), img_size=imgs[0][0].size)
imgs = [[F.affine(t, *params, F.InterpolationMode.BILINEAR) for t in img] for img in imgs]
return imgs if len(imgs) > 1 else imgs[0]
def _motion_affine(self, *imgs):
config = dict(degrees=(-10, 10), translate=(0.1, 0.1),
scale_ranges=(0.9, 1.1), shears=(-5, 5), img_size=imgs[0][0].size)
angleA, (transXA, transYA), scaleA, (shearXA, shearYA) = transforms.RandomAffine.get_params(**config)
angleB, (transXB, transYB), scaleB, (shearXB, shearYB) = transforms.RandomAffine.get_params(**config)
T = len(imgs[0])
easing = random_easing_fn()
for t in range(T):
percentage = easing(t / (T - 1))
angle = lerp(angleA, angleB, percentage)
transX = lerp(transXA, transXB, percentage)
transY = lerp(transYA, transYB, percentage)
scale = lerp(scaleA, scaleB, percentage)
shearX = lerp(shearXA, shearXB, percentage)
shearY = lerp(shearYA, shearYB, percentage)
for img in imgs:
img[t] = F.affine(img[t], angle, (transX, transY), scale, (shearX, shearY), F.InterpolationMode.BILINEAR)
return imgs if len(imgs) > 1 else imgs[0]
def _motion_noise(self, *imgs):
grain_size = random.random() * 3 + 1 # range 1 ~ 4
monochrome = random.random() < 0.5
for img in imgs:
T, C, H, W = img.shape
noise = torch.randn((T, 1 if monochrome else C, round(H / grain_size), round(W / grain_size)))
noise.mul_(random.random() * 0.2 / grain_size)
if grain_size != 1:
noise = F.resize(noise, (H, W))
img.add_(noise).clamp_(0, 1)
return imgs if len(imgs) > 1 else imgs[0]
def _motion_color_jitter(self, *imgs):
brightnessA, brightnessB, contrastA, contrastB, saturationA, saturationB, hueA, hueB \
= torch.randn(8).mul(0.1).tolist()
strength = random.random() * 0.2
easing = random_easing_fn()
T = len(imgs[0])
for t in range(T):
percentage = easing(t / (T - 1)) * strength
for img in imgs:
img[t] = F.adjust_brightness(img[t], max(1 + lerp(brightnessA, brightnessB, percentage), 0.1))
img[t] = F.adjust_contrast(img[t], max(1 + lerp(contrastA, contrastB, percentage), 0.1))
img[t] = F.adjust_saturation(img[t], max(1 + lerp(brightnessA, brightnessB, percentage), 0.1))
img[t] = F.adjust_hue(img[t], min(0.5, max(-0.5, lerp(hueA, hueB, percentage) * 0.1)))
return imgs if len(imgs) > 1 else imgs[0]
def _motion_blur(self, *imgs):
blurA = random.random() * 10
blurB = random.random() * 10
T = len(imgs[0])
easing = random_easing_fn()
for t in range(T):
percentage = easing(t / (T - 1))
blur = max(lerp(blurA, blurB, percentage), 0)
if blur != 0:
kernel_size = int(blur * 2)
if kernel_size % 2 == 0:
kernel_size += 1 # Make kernel_size odd
for img in imgs:
img[t] = F.gaussian_blur(img[t], kernel_size, sigma=blur)
return imgs if len(imgs) > 1 else imgs[0]
def _motion_pause(self, *imgs):
T = len(imgs[0])
pause_frame = random.choice(range(T - 1))
pause_length = random.choice(range(T - pause_frame))
for img in imgs:
img[pause_frame + 1 : pause_frame + pause_length] = img[pause_frame]
return imgs if len(imgs) > 1 else imgs[0]
def lerp(a, b, percentage):
return a * (1 - percentage) + b * percentage
def random_easing_fn():
if random.random() < 0.2:
return ef.LinearInOut()
else:
return random.choice([
ef.BackEaseIn,
ef.BackEaseOut,
ef.BackEaseInOut,
ef.BounceEaseIn,
ef.BounceEaseOut,
ef.BounceEaseInOut,
ef.CircularEaseIn,
ef.CircularEaseOut,
ef.CircularEaseInOut,
ef.CubicEaseIn,
ef.CubicEaseOut,
ef.CubicEaseInOut,
ef.ExponentialEaseIn,
ef.ExponentialEaseOut,
ef.ExponentialEaseInOut,
ef.ElasticEaseIn,
ef.ElasticEaseOut,
ef.ElasticEaseInOut,
ef.QuadEaseIn,
ef.QuadEaseOut,
ef.QuadEaseInOut,
ef.QuarticEaseIn,
ef.QuarticEaseOut,
ef.QuarticEaseInOut,
ef.QuinticEaseIn,
ef.QuinticEaseOut,
ef.QuinticEaseInOut,
ef.SineEaseIn,
ef.SineEaseOut,
ef.SineEaseInOut,
Step,
])()
class Step: # Custom easing function for sudden change.
def __call__(self, value):
return 0 if value < 0.5 else 1
# ---------------------------- Frame Sampler ----------------------------
class TrainFrameSampler:
def __init__(self, speed=[0.5, 1, 2, 3, 4, 5]):
self.speed = speed
def __call__(self, seq_length):
frames = list(range(seq_length))
# Speed up
speed = random.choice(self.speed)
frames = [int(f * speed) for f in frames]
# Shift
shift = random.choice(range(seq_length))
frames = [f + shift for f in frames]
# Reverse
if random.random() < 0.5:
frames = frames[::-1]
return frames
class ValidFrameSampler:
def __call__(self, seq_length):
return range(seq_length)
|