File size: 8,267 Bytes
355b5d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.

import trimesh
import trimesh.proximity
import trimesh.sample
import numpy as np
import math
import os
from PIL import Image

import argparse

def euler_to_rot_mat(r_x, r_y, r_z):
    R_x = np.array([[1, 0, 0],
                    [0, math.cos(r_x), -math.sin(r_x)],
                    [0, math.sin(r_x), math.cos(r_x)]
                    ])

    R_y = np.array([[math.cos(r_y), 0, math.sin(r_y)],
                    [0, 1, 0],
                    [-math.sin(r_y), 0, math.cos(r_y)]
                    ])

    R_z = np.array([[math.cos(r_z), -math.sin(r_z), 0],
                    [math.sin(r_z), math.cos(r_z), 0],
                    [0, 0, 1]
                    ])

    R = np.dot(R_z, np.dot(R_y, R_x))

    return R


class MeshEvaluator:
    _normal_render = None

    @staticmethod
    def init_gl():
        from .render.gl.normal_render import NormalRender
        MeshEvaluator._normal_render = NormalRender(width=512, height=512)

    def __init__(self):
        pass

    def set_mesh(self, src_path, tgt_path, scale_factor=1.0, offset=0):
        self.src_mesh = trimesh.load(src_path)
        self.tgt_mesh = trimesh.load(tgt_path)

        self.scale_factor = scale_factor
        self.offset = offset


    def get_chamfer_dist(self, num_samples=10000):
        # Chamfer
        src_surf_pts, _ = trimesh.sample.sample_surface(self.src_mesh, num_samples)
        tgt_surf_pts, _ = trimesh.sample.sample_surface(self.tgt_mesh, num_samples)

        _, src_tgt_dist, _ = trimesh.proximity.closest_point(self.tgt_mesh, src_surf_pts)
        _, tgt_src_dist, _ = trimesh.proximity.closest_point(self.src_mesh, tgt_surf_pts)

        src_tgt_dist[np.isnan(src_tgt_dist)] = 0
        tgt_src_dist[np.isnan(tgt_src_dist)] = 0

        src_tgt_dist = src_tgt_dist.mean()
        tgt_src_dist = tgt_src_dist.mean()

        chamfer_dist = (src_tgt_dist + tgt_src_dist) / 2

        return chamfer_dist

    def get_surface_dist(self, num_samples=10000):
        # P2S
        src_surf_pts, _ = trimesh.sample.sample_surface(self.src_mesh, num_samples)

        _, src_tgt_dist, _ = trimesh.proximity.closest_point(self.tgt_mesh, src_surf_pts)

        src_tgt_dist[np.isnan(src_tgt_dist)] = 0

        src_tgt_dist = src_tgt_dist.mean()

        return src_tgt_dist

    def _render_normal(self, mesh, deg):
        view_mat = np.identity(4)
        view_mat[:3, :3] *= 2 / 256
        rz = deg / 180. * np.pi
        model_mat = np.identity(4)
        model_mat[:3, :3] = euler_to_rot_mat(0, rz, 0)
        model_mat[1, 3] = self.offset
        view_mat[2, 2] *= -1

        self._normal_render.set_matrices(view_mat, model_mat)
        self._normal_render.set_normal_mesh(self.scale_factor*mesh.vertices, mesh.faces, mesh.vertex_normals, mesh.faces)
        self._normal_render.draw()
        normal_img = self._normal_render.get_color()
        return normal_img

    def _get_reproj_normal_error(self, deg):
        tgt_normal = self._render_normal(self.tgt_mesh, deg)
        src_normal = self._render_normal(self.src_mesh, deg)

        error = ((src_normal[:, :, :3] - tgt_normal[:, :, :3]) ** 2).mean() * 3

        return error, src_normal, tgt_normal

    def get_reproj_normal_error(self, frontal=True, back=True, left=True, right=True, save_demo_img=None):
        # reproj error
        # if save_demo_img is not None, save a visualization at the given path (etc, "./test.png")
        if self._normal_render is None:
            print("In order to use normal render, "
                  "you have to call init_gl() before initialing any evaluator objects.")
            return -1

        side_cnt = 0
        total_error = 0
        demo_list = []
        if frontal:
            side_cnt += 1
            error, src_normal, tgt_normal = self._get_reproj_normal_error(0)
            total_error += error
            demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
        if back:
            side_cnt += 1
            error, src_normal, tgt_normal = self._get_reproj_normal_error(180)
            total_error += error
            demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
        if left:
            side_cnt += 1
            error, src_normal, tgt_normal = self._get_reproj_normal_error(90)
            total_error += error
            demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
        if right:
            side_cnt += 1
            error, src_normal, tgt_normal = self._get_reproj_normal_error(270)
            total_error += error
            demo_list.append(np.concatenate([src_normal, tgt_normal], axis=0))
        if save_demo_img is not None:
            res_array = np.concatenate(demo_list, axis=1)
            res_img = Image.fromarray((res_array * 255).astype(np.uint8))
            res_img.save(save_demo_img)
        return total_error / side_cnt

if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('-r', '--root', type=str, required=True)
    parser.add_argument('-t', '--tar_path', type=str, required=True)
    args = parser.parse_args()

    evaluator = MeshEvaluator()
    evaluator.init_gl()

    def run(root, exp_name, tar_path):
        src_path = os.path.join(root, exp_name, 'recon')
        rp_path = os.path.join(tar_path, 'RP', 'GEO', 'OBJ')
        bf_path = os.path.join(tar_path, 'BUFF', 'GEO', 'PLY')

        buff_files = [f for f in os.listdir(bf_path) if '.ply' in f]

        src_names = ['0_0_00.obj', '90_0_00.obj', '180_0_00.obj', '270_0_00.obj']

        total_vals = []
        items = []
        for file in buff_files:
            tar_name = os.path.join(bf_path, file)
            name = tar_name.split('/')[-1][:-4]

            for src in src_names:
                src_name = os.path.join(src_path, 'result_%s_%s' % (name, src))
                if not os.path.exists(src_name):
                    continue
                evaluator.set_mesh(src_name, tar_name, 0.13, -40)

                vals = []
                vals.append(0.1 * evaluator.get_chamfer_dist())
                vals.append(0.1 * evaluator.get_surface_dist())
                vals.append(4.0 * evaluator.get_reproj_normal_error(save_demo_img=os.path.join(src_path, '%s_%s.png' % (name, src[:-4]))))

                item = {
                    'name': '%s_%s' % (name, src),
                    'vals': vals
                }

                total_vals.append(vals)
                items.append(item)

        vals = np.array(total_vals).mean(0)
        buf_val = vals

        np.save(os.path.join(root, exp_name, 'buff-item.npy'), np.array(items))
        np.save(os.path.join(root, exp_name, 'buff-vals.npy'), total_vals)

        rp_files = [f for f in os.listdir(rp_path) if '.obj' in f]

        total_vals = []
        items = []
        for file in rp_files:
            tar_name = os.path.join(rp_path, file)
            name = tar_name.split('/')[-1][:-9]

            for src in src_names:
                src_name = os.path.join(src_path, 'result_%s_%s' % (name, src))
                if not os.path.exists(src_name):
                    continue

                evaluator.set_mesh(src_name, tar_name, 1.3, -120)

                vals = []
                vals.append(evaluator.get_chamfer_dist())
                vals.append(evaluator.get_surface_dist())
                vals.append(4.0 * evaluator.get_reproj_normal_error(save_demo_img=os.path.join(src_path, '%s_%s.png' % (name, src[:-4]))))

                item = {
                    'name': '%s_%s' % (name, src),
                    'vals': vals
                }

                total_vals.append(vals)
                items.append(item)

        np.save(os.path.join(root, exp_name, 'rp-item.npy'), np.array(items))
        np.save(os.path.join(root, exp_name, 'rp-vals.npy'), total_vals)

        vals = np.array(total_vals).mean(0)
        print('BUFF - chamfer: %.4f  p2s: %.4f  nml: %.4f' % (buf_val[0], buf_val[1], buf_val[2]))
        print('RP - chamfer: %.4f  p2s: %.4f  nml: %.4f' % (vals[0], vals[1], vals[2]))

    exp_list = ['pifuhd_final']

    root = args.root
    tar_path = args.tar_path

    for exp in exp_list:
        run(root, exp, tar_path)