--- library_name: peft base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 1807746b-c659-440c-b48c-ee5406dfff85 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 840c2df7b5557273_train_data.json ds_type: json format: custom path: /workspace/input_data/840c2df7b5557273_train_data.json type: field_input: input field_instruction: instruction field_output: output format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/1807746b-c659-440c-b48c-ee5406dfff85 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_steps: 50 micro_batch_size: 8 mlflow_experiment_name: /tmp/840c2df7b5557273_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.1 wandb_entity: eddysang wandb_mode: online wandb_name: 0a371ad5-8fec-4245-9546-c878119ebad5 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 0a371ad5-8fec-4245-9546-c878119ebad5 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# 1807746b-c659-440c-b48c-ee5406dfff85 This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3552 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0036 | 1 | 10.3784 | | 10.3783 | 0.0181 | 5 | 10.3782 | | 10.3787 | 0.0363 | 10 | 10.3773 | | 10.3763 | 0.0544 | 15 | 10.3756 | | 10.3747 | 0.0725 | 20 | 10.3722 | | 10.3699 | 0.0907 | 25 | 10.3655 | | 10.3617 | 0.1088 | 30 | 10.3591 | | 10.3586 | 0.1269 | 35 | 10.3564 | | 10.356 | 0.1451 | 40 | 10.3555 | | 10.3555 | 0.1632 | 45 | 10.3553 | | 10.3563 | 0.1813 | 50 | 10.3552 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1