---
library_name: peft
license: llama3
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 25a33e11-6aee-4ba0-98a3-3329318b5c77
results: []
---
[](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cb755dbfd59bc042_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cb755dbfd59bc042_train_data.json
type:
field_input: ''
field_instruction: prompt
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 256
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 32
gradient_checkpointing: true
group_by_length: false
hub_model_id: mamung/25a33e11-6aee-4ba0-98a3-3329318b5c77
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 3
lora_alpha: 64
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 32
lora_target_linear: true
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
lr_scheduler: cosine
max_grad_norm: 2
max_steps: 100
micro_batch_size: 2
mlflow_experiment_name: /tmp/cb755dbfd59bc042_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1.0e-05
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: eddysang
wandb_mode: online
wandb_name: 5e080b58-8e49-4fa2-b005-5247717cba1b
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 5e080b58-8e49-4fa2-b005-5247717cba1b
warmup_steps: 20
weight_decay: 0.02
xformers_attention: false
```
# 25a33e11-6aee-4ba0-98a3-3329318b5c77
This model is a fine-tuned version of [WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0](https://huggingface.co/WhiteRabbitNeo/Llama-3-WhiteRabbitNeo-8B-v2.0) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0599
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 32
- total_train_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 20
- training_steps: 100
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| No log | 0.0024 | 1 | 3.2281 |
| 1.9405 | 0.0216 | 9 | 1.9358 |
| 1.5861 | 0.0433 | 18 | 1.4582 |
| 1.5059 | 0.0649 | 27 | 1.3450 |
| 1.4494 | 0.0865 | 36 | 1.2606 |
| 1.3834 | 0.1082 | 45 | 1.1997 |
| 1.1531 | 0.1298 | 54 | 1.1465 |
| 1.1702 | 0.1515 | 63 | 1.1220 |
| 1.2195 | 0.1731 | 72 | 1.0894 |
| 1.237 | 0.1947 | 81 | 1.0702 |
| 1.1906 | 0.2164 | 90 | 1.0622 |
| 1.117 | 0.2380 | 99 | 1.0599 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1