mamung commited on
Commit
b67f05a
·
verified ·
1 Parent(s): d3cf439

End of training

Browse files
Files changed (2) hide show
  1. README.md +168 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/Yarn-Llama-2-7b-128k
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 3d4b73bd-167a-4355-986b-798396b65e7b
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: NousResearch/Yarn-Llama-2-7b-128k
22
+ bf16: true
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 31a03c1b7e5bae2e_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/31a03c1b7e5bae2e_train_data.json
31
+ type:
32
+ field_instruction: context
33
+ field_output: question
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 256
42
+ eval_table_size: null
43
+ evals_per_epoch: 4
44
+ flash_attention: false
45
+ fp16: null
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 32
49
+ gradient_checkpointing: true
50
+ group_by_length: false
51
+ hub_model_id: mamung/3d4b73bd-167a-4355-986b-798396b65e7b
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0002
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 3
60
+ lora_alpha: 64
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 32
65
+ lora_target_linear: true
66
+ lora_target_modules:
67
+ - q_proj
68
+ - k_proj
69
+ - v_proj
70
+ - o_proj
71
+ lr_scheduler: cosine
72
+ max_grad_norm: 2
73
+ max_steps: 100
74
+ micro_batch_size: 2
75
+ mlflow_experiment_name: /tmp/31a03c1b7e5bae2e_train_data.json
76
+ model_type: AutoModelForCausalLM
77
+ num_epochs: 3
78
+ optim_args:
79
+ adam_beta1: 0.9
80
+ adam_beta2: 0.95
81
+ adam_epsilon: 1.0e-05
82
+ optimizer: adamw_torch
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ saves_per_epoch: 4
89
+ sequence_len: 2048
90
+ strict: false
91
+ tf32: false
92
+ tokenizer_type: AutoTokenizer
93
+ train_on_inputs: false
94
+ trust_remote_code: true
95
+ val_set_size: 0.05
96
+ wandb_entity: eddysang
97
+ wandb_mode: online
98
+ wandb_name: 88ca6a20-147a-40a4-8388-756c2b7f173c
99
+ wandb_project: Gradients-On-Demand
100
+ wandb_run: your_name
101
+ wandb_runid: 88ca6a20-147a-40a4-8388-756c2b7f173c
102
+ warmup_steps: 20
103
+ weight_decay: 0.02
104
+ xformers_attention: false
105
+
106
+ ```
107
+
108
+ </details><br>
109
+
110
+ # 3d4b73bd-167a-4355-986b-798396b65e7b
111
+
112
+ This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset.
113
+ It achieves the following results on the evaluation set:
114
+ - Loss: 0.6613
115
+
116
+ ## Model description
117
+
118
+ More information needed
119
+
120
+ ## Intended uses & limitations
121
+
122
+ More information needed
123
+
124
+ ## Training and evaluation data
125
+
126
+ More information needed
127
+
128
+ ## Training procedure
129
+
130
+ ### Training hyperparameters
131
+
132
+ The following hyperparameters were used during training:
133
+ - learning_rate: 0.0002
134
+ - train_batch_size: 2
135
+ - eval_batch_size: 2
136
+ - seed: 42
137
+ - gradient_accumulation_steps: 32
138
+ - total_train_batch_size: 64
139
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
140
+ - lr_scheduler_type: cosine
141
+ - lr_scheduler_warmup_steps: 20
142
+ - training_steps: 100
143
+
144
+ ### Training results
145
+
146
+ | Training Loss | Epoch | Step | Validation Loss |
147
+ |:-------------:|:------:|:----:|:---------------:|
148
+ | No log | 0.0005 | 1 | 1.2207 |
149
+ | 31.7486 | 0.0043 | 9 | 0.8724 |
150
+ | 22.876 | 0.0085 | 18 | 0.7378 |
151
+ | 23.504 | 0.0128 | 27 | 0.7081 |
152
+ | 22.467 | 0.0171 | 36 | 0.6968 |
153
+ | 22.2379 | 0.0214 | 45 | 0.6866 |
154
+ | 22.4085 | 0.0256 | 54 | 0.6808 |
155
+ | 22.147 | 0.0299 | 63 | 0.6737 |
156
+ | 21.7931 | 0.0342 | 72 | 0.6666 |
157
+ | 20.9497 | 0.0384 | 81 | 0.6634 |
158
+ | 21.4128 | 0.0427 | 90 | 0.6617 |
159
+ | 21.495 | 0.0470 | 99 | 0.6613 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.13.2
165
+ - Transformers 4.46.0
166
+ - Pytorch 2.5.0+cu124
167
+ - Datasets 3.0.1
168
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb068cb5e996fdec103558443c81d6b5951d2a7392ace06d87942926181240bd
3
+ size 319977674