mamung commited on
Commit
886ca9e
·
verified ·
1 Parent(s): cf43460

End of training

Browse files
Files changed (2) hide show
  1. README.md +171 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: other
4
+ base_model: NousResearch/Meta-Llama-3-8B
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: 7ff1eced-2e8b-4846-8663-e202ce37b08c
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
17
+ <details><summary>See axolotl config</summary>
18
+
19
+ axolotl version: `0.4.1`
20
+ ```yaml
21
+ adapter: lora
22
+ base_model: NousResearch/Meta-Llama-3-8B
23
+ bf16: true
24
+ chat_template: llama3
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 9f860ccb7e806546_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/9f860ccb7e806546_train_data.json
32
+ type:
33
+ field_instruction: prompt
34
+ field_output: chosen
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ early_stopping_patience: null
42
+ eval_max_new_tokens: 256
43
+ eval_table_size: null
44
+ evals_per_epoch: 4
45
+ flash_attention: false
46
+ fp16: null
47
+ fsdp: null
48
+ fsdp_config: null
49
+ gradient_accumulation_steps: 32
50
+ gradient_checkpointing: true
51
+ group_by_length: false
52
+ hub_model_id: mamung/7ff1eced-2e8b-4846-8663-e202ce37b08c
53
+ hub_repo: null
54
+ hub_strategy: checkpoint
55
+ hub_token: null
56
+ learning_rate: 0.0002
57
+ load_in_4bit: false
58
+ load_in_8bit: false
59
+ local_rank: null
60
+ logging_steps: 3
61
+ lora_alpha: 64
62
+ lora_dropout: 0.05
63
+ lora_fan_in_fan_out: null
64
+ lora_model_dir: null
65
+ lora_r: 32
66
+ lora_target_linear: true
67
+ lora_target_modules:
68
+ - q_proj
69
+ - k_proj
70
+ - v_proj
71
+ - o_proj
72
+ lr_scheduler: cosine
73
+ max_grad_norm: 2
74
+ max_steps: 100
75
+ micro_batch_size: 2
76
+ mlflow_experiment_name: /tmp/9f860ccb7e806546_train_data.json
77
+ model_type: AutoModelForCausalLM
78
+ num_epochs: 3
79
+ optim_args:
80
+ adam_beta1: 0.9
81
+ adam_beta2: 0.95
82
+ adam_epsilon: 1.0e-05
83
+ optimizer: adamw_torch
84
+ output_dir: miner_id_24
85
+ pad_to_sequence_len: true
86
+ resume_from_checkpoint: null
87
+ s2_attention: null
88
+ sample_packing: false
89
+ saves_per_epoch: 4
90
+ sequence_len: 2048
91
+ special_tokens:
92
+ pad_token: <|end_of_text|>
93
+ strict: false
94
+ tf32: false
95
+ tokenizer_type: AutoTokenizer
96
+ train_on_inputs: false
97
+ trust_remote_code: true
98
+ val_set_size: 0.05
99
+ wandb_entity: eddysang
100
+ wandb_mode: online
101
+ wandb_name: 92906d73-ae0c-43b3-9735-14fe2124bf2a
102
+ wandb_project: Gradients-On-Demand
103
+ wandb_run: your_name
104
+ wandb_runid: 92906d73-ae0c-43b3-9735-14fe2124bf2a
105
+ warmup_steps: 20
106
+ weight_decay: 0.02
107
+ xformers_attention: false
108
+
109
+ ```
110
+
111
+ </details><br>
112
+
113
+ # 7ff1eced-2e8b-4846-8663-e202ce37b08c
114
+
115
+ This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B](https://huggingface.co/NousResearch/Meta-Llama-3-8B) on the None dataset.
116
+ It achieves the following results on the evaluation set:
117
+ - Loss: 1.8266
118
+
119
+ ## Model description
120
+
121
+ More information needed
122
+
123
+ ## Intended uses & limitations
124
+
125
+ More information needed
126
+
127
+ ## Training and evaluation data
128
+
129
+ More information needed
130
+
131
+ ## Training procedure
132
+
133
+ ### Training hyperparameters
134
+
135
+ The following hyperparameters were used during training:
136
+ - learning_rate: 0.0002
137
+ - train_batch_size: 2
138
+ - eval_batch_size: 2
139
+ - seed: 42
140
+ - gradient_accumulation_steps: 32
141
+ - total_train_batch_size: 64
142
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
143
+ - lr_scheduler_type: cosine
144
+ - lr_scheduler_warmup_steps: 20
145
+ - training_steps: 100
146
+
147
+ ### Training results
148
+
149
+ | Training Loss | Epoch | Step | Validation Loss |
150
+ |:-------------:|:------:|:----:|:---------------:|
151
+ | No log | 0.0191 | 1 | 4.2603 |
152
+ | 3.1815 | 0.1720 | 9 | 2.6312 |
153
+ | 2.0577 | 0.3441 | 18 | 1.9758 |
154
+ | 1.9087 | 0.5161 | 27 | 1.8731 |
155
+ | 1.8836 | 0.6882 | 36 | 1.8448 |
156
+ | 1.8482 | 0.8602 | 45 | 1.8272 |
157
+ | 2.0545 | 1.0323 | 54 | 1.7873 |
158
+ | 1.4003 | 1.2043 | 63 | 1.8731 |
159
+ | 1.2632 | 1.3763 | 72 | 1.8426 |
160
+ | 1.3178 | 1.5484 | 81 | 1.8405 |
161
+ | 1.2796 | 1.7204 | 90 | 1.8262 |
162
+ | 1.2715 | 1.8925 | 99 | 1.8266 |
163
+
164
+
165
+ ### Framework versions
166
+
167
+ - PEFT 0.13.2
168
+ - Transformers 4.46.0
169
+ - Pytorch 2.5.0+cu124
170
+ - Datasets 3.0.1
171
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa239d9411c9eaa2709425cfa1c350aaeae25eebce931cfc0312836ff2e5e489
3
+ size 335706186