mamung commited on
Commit
3ab9d03
·
verified ·
1 Parent(s): ac7879f

End of training

Browse files
Files changed (2) hide show
  1. README.md +170 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,170 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: NousResearch/CodeLlama-13b-hf-flash
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: 96b38f6c-9871-4488-bfe5-3172031a45fa
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: NousResearch/CodeLlama-13b-hf-flash
22
+ bf16: true
23
+ chat_template: llama3
24
+ dataset_prepared_path: null
25
+ datasets:
26
+ - data_files:
27
+ - 08eb114885dfeea3_train_data.json
28
+ ds_type: json
29
+ format: custom
30
+ path: /workspace/input_data/08eb114885dfeea3_train_data.json
31
+ type:
32
+ field_instruction: instruction
33
+ field_output: output
34
+ format: '{instruction}'
35
+ no_input_format: '{instruction}'
36
+ system_format: '{system}'
37
+ system_prompt: ''
38
+ debug: null
39
+ deepspeed: null
40
+ early_stopping_patience: null
41
+ eval_max_new_tokens: 256
42
+ eval_table_size: null
43
+ evals_per_epoch: 4
44
+ flash_attention: false
45
+ fp16: null
46
+ fsdp: null
47
+ fsdp_config: null
48
+ gradient_accumulation_steps: 32
49
+ gradient_checkpointing: true
50
+ group_by_length: false
51
+ hub_model_id: mamung/96b38f6c-9871-4488-bfe5-3172031a45fa
52
+ hub_repo: null
53
+ hub_strategy: checkpoint
54
+ hub_token: null
55
+ learning_rate: 0.0002
56
+ load_in_4bit: false
57
+ load_in_8bit: false
58
+ local_rank: null
59
+ logging_steps: 3
60
+ lora_alpha: 64
61
+ lora_dropout: 0.05
62
+ lora_fan_in_fan_out: null
63
+ lora_model_dir: null
64
+ lora_r: 32
65
+ lora_target_linear: true
66
+ lora_target_modules:
67
+ - q_proj
68
+ - k_proj
69
+ - v_proj
70
+ - o_proj
71
+ lr_scheduler: cosine
72
+ max_grad_norm: 2
73
+ max_steps: 100
74
+ micro_batch_size: 2
75
+ mlflow_experiment_name: /tmp/08eb114885dfeea3_train_data.json
76
+ model_type: AutoModelForCausalLM
77
+ num_epochs: 3
78
+ optim_args:
79
+ adam_beta1: 0.9
80
+ adam_beta2: 0.95
81
+ adam_epsilon: 1.0e-05
82
+ optimizer: adamw_torch
83
+ output_dir: miner_id_24
84
+ pad_to_sequence_len: true
85
+ resume_from_checkpoint: null
86
+ s2_attention: null
87
+ sample_packing: false
88
+ saves_per_epoch: 4
89
+ sequence_len: 2048
90
+ special_tokens:
91
+ pad_token: </s>
92
+ strict: false
93
+ tf32: false
94
+ tokenizer_type: AutoTokenizer
95
+ train_on_inputs: false
96
+ trust_remote_code: true
97
+ val_set_size: 0.05
98
+ wandb_entity: eddysang
99
+ wandb_mode: online
100
+ wandb_name: cdd40155-8709-4bb4-b45f-1f63ef017767
101
+ wandb_project: Gradients-On-Demand
102
+ wandb_run: your_name
103
+ wandb_runid: cdd40155-8709-4bb4-b45f-1f63ef017767
104
+ warmup_steps: 20
105
+ weight_decay: 0.02
106
+ xformers_attention: false
107
+
108
+ ```
109
+
110
+ </details><br>
111
+
112
+ # 96b38f6c-9871-4488-bfe5-3172031a45fa
113
+
114
+ This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset.
115
+ It achieves the following results on the evaluation set:
116
+ - Loss: 1.3586
117
+
118
+ ## Model description
119
+
120
+ More information needed
121
+
122
+ ## Intended uses & limitations
123
+
124
+ More information needed
125
+
126
+ ## Training and evaluation data
127
+
128
+ More information needed
129
+
130
+ ## Training procedure
131
+
132
+ ### Training hyperparameters
133
+
134
+ The following hyperparameters were used during training:
135
+ - learning_rate: 0.0002
136
+ - train_batch_size: 2
137
+ - eval_batch_size: 2
138
+ - seed: 42
139
+ - gradient_accumulation_steps: 32
140
+ - total_train_batch_size: 64
141
+ - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05
142
+ - lr_scheduler_type: cosine
143
+ - lr_scheduler_warmup_steps: 20
144
+ - training_steps: 100
145
+
146
+ ### Training results
147
+
148
+ | Training Loss | Epoch | Step | Validation Loss |
149
+ |:-------------:|:------:|:----:|:---------------:|
150
+ | No log | 0.0289 | 1 | 2.2235 |
151
+ | 66.3847 | 0.2597 | 9 | 1.9188 |
152
+ | 51.9351 | 0.5194 | 18 | 1.5988 |
153
+ | 47.7303 | 0.7791 | 27 | 1.4810 |
154
+ | 46.168 | 1.0487 | 36 | 1.4284 |
155
+ | 43.2469 | 1.3084 | 45 | 1.3944 |
156
+ | 43.469 | 1.5681 | 54 | 1.3767 |
157
+ | 40.953 | 1.8278 | 63 | 1.3634 |
158
+ | 37.3547 | 2.0974 | 72 | 1.3545 |
159
+ | 38.6229 | 2.3571 | 81 | 1.3696 |
160
+ | 36.4226 | 2.6168 | 90 | 1.3591 |
161
+ | 35.964 | 2.8765 | 99 | 1.3586 |
162
+
163
+
164
+ ### Framework versions
165
+
166
+ - PEFT 0.13.2
167
+ - Transformers 4.46.0
168
+ - Pytorch 2.5.0+cu124
169
+ - Datasets 3.0.1
170
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4eb8273632439f6ad1a49991d46a978c963bf7cae16c823c6ca1dd761770e929
3
+ size 500897546