--- library_name: peft base_model: NousResearch/CodeLlama-13b-hf-flash tags: - axolotl - generated_from_trainer model-index: - name: 96b38f6c-9871-4488-bfe5-3172031a45fa results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/CodeLlama-13b-hf-flash bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 08eb114885dfeea3_train_data.json ds_type: json format: custom path: /workspace/input_data/08eb114885dfeea3_train_data.json type: field_instruction: instruction field_output: output format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/96b38f6c-9871-4488-bfe5-3172031a45fa hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/08eb114885dfeea3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: cdd40155-8709-4bb4-b45f-1f63ef017767 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: cdd40155-8709-4bb4-b45f-1f63ef017767 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# 96b38f6c-9871-4488-bfe5-3172031a45fa This model is a fine-tuned version of [NousResearch/CodeLlama-13b-hf-flash](https://huggingface.co/NousResearch/CodeLlama-13b-hf-flash) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3586 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0289 | 1 | 2.2235 | | 66.3847 | 0.2597 | 9 | 1.9188 | | 51.9351 | 0.5194 | 18 | 1.5988 | | 47.7303 | 0.7791 | 27 | 1.4810 | | 46.168 | 1.0487 | 36 | 1.4284 | | 43.2469 | 1.3084 | 45 | 1.3944 | | 43.469 | 1.5681 | 54 | 1.3767 | | 40.953 | 1.8278 | 63 | 1.3634 | | 37.3547 | 2.0974 | 72 | 1.3545 | | 38.6229 | 2.3571 | 81 | 1.3696 | | 36.4226 | 2.6168 | 90 | 1.3591 | | 35.964 | 2.8765 | 99 | 1.3586 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1