--- library_name: peft base_model: NousResearch/Yarn-Llama-2-7b-128k tags: - axolotl - generated_from_trainer model-index: - name: ee3d2682-aeb0-4ff6-b3b6-558aa083df56 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: NousResearch/Yarn-Llama-2-7b-128k bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 7006679e7e87bef3_train_data.json ds_type: json format: custom path: /workspace/input_data/7006679e7e87bef3_train_data.json type: field_input: input field_instruction: intent field_output: target format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 256 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 32 gradient_checkpointing: true group_by_length: false hub_model_id: mamung/ee3d2682-aeb0-4ff6-b3b6-558aa083df56 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 3 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 2 max_steps: 100 micro_batch_size: 2 mlflow_experiment_name: /tmp/7006679e7e87bef3_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1.0e-05 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 2048 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: eddysang wandb_mode: online wandb_name: 6b37e662-fa63-43cd-b5e0-33f7aa9694e8 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 6b37e662-fa63-43cd-b5e0-33f7aa9694e8 warmup_steps: 20 weight_decay: 0.02 xformers_attention: false ```

# ee3d2682-aeb0-4ff6-b3b6-558aa083df56 This model is a fine-tuned version of [NousResearch/Yarn-Llama-2-7b-128k](https://huggingface.co/NousResearch/Yarn-Llama-2-7b-128k) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0501 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0167 | 1 | 1.4724 | | 25.533 | 0.1507 | 9 | 0.4807 | | 6.8537 | 0.3014 | 18 | 0.1697 | | 3.9352 | 0.4521 | 27 | 0.1072 | | 3.0822 | 0.6028 | 36 | 0.0906 | | 2.7679 | 0.7535 | 45 | 0.0738 | | 2.3485 | 0.9042 | 54 | 0.0690 | | 1.8185 | 1.0602 | 63 | 0.0584 | | 1.566 | 1.2109 | 72 | 0.0573 | | 1.4988 | 1.3616 | 81 | 0.0523 | | 1.6353 | 1.5123 | 90 | 0.0507 | | 1.5689 | 1.6630 | 99 | 0.0501 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1