--- license: other library_name: peft tags: - axolotl - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B model-index: - name: open-aditi-chat-hi-1.25-llama3 results: [] --- Preview of dataset trained on: https://huggingface.co/datasets/manishiitg/aditi-syn-v2 The synthetic dataset (https://huggingface.co/datasets/manishiitg/aditi-syn-v2) and the full data creation pipeline (https://github.com/manishiitg/aditi_dataset) have been open-sourced, enabling transparency and fostering further research in this domain. The dataset is a rich tapestry of Hinglish (a blend of Hindi and English) data, as well as a diverse array of tasks spanning tools, retrieval-augmented generation (RAG), mathematics, and reasoning – all in the Hindi language. LMJudge Eval ============ https://github.com/manishiitg/IndicLMJudge #### LLM Judge Language: hi | Model | Language | Score | No# Questions | | --- | --- | --- | --- | | mistralai/Mixtral-8x7B-Instruct-v0.1 | hi | 8.7148 | 554 | | Qwen/Qwen1.5-72B-Chat-AWQ | hi | 8.3695 | 554 | | manishiitg/open-aditi-v6-llama3 | hi | 8.2659 | 551 | | Qwen/Qwen1.5-14B-Chat | hi | 8.2404 | 554 | | google/gemma-7b-it | hi | 7.9152 | 554 | | manishiitg/open-aditi-v6-gemma | hi | 7.8634 | 549 | | Qwen/Qwen1.5-7B-Chat | hi | 7.8587 | 554 | | manishiitg/open-aditi-hi-v3 | hi | 7.7644 | 554 | | manishiitg/open-aditi-hi-v4 | hi | 7.6150 | 554 | | manishiitg/open-aditi-hi-v2 | hi | 7.2518 | 554 | | teknium/OpenHermes-2.5-Mistral-7B | hi | 7.2489 | 554 | | ai4bharat/Airavata | hi | 6.9468 | 554 | | 01-ai/Yi-34B-Chat | hi | 6.5801 | 554 | | manishiitg/open-aditi-hi-v1 | hi | 4.7022 | 554 | | sarvamai/OpenHathi-7B-Hi-v0.1-Base | hi | 4.2834 | 598 | | Qwen/Qwen1.5-4B-Chat | hi | 4.1101 | 554 | #### LLM Judge Language: en | Model | Language | Score | No# Questions | | --- | --- | --- | --- | | Qwen/Qwen1.5-14B-Chat | en | 9.1947 | 356 | | Qwen/Qwen1.5-72B-Chat-AWQ | en | 9.1618 | 356 | | Qwen/Qwen1.5-7B-Chat | en | 9.1570 | 356 | | 01-ai/Yi-34B-Chat | en | 9.1368 | 356 | | mistralai/Mixtral-8x7B-Instruct-v0.1 | en | 9.1306 | 356 | | manishiitg/open-aditi-v6-gemma | en | 9.1003 | 356 | | teknium/OpenHermes-2.5-Mistral-7B | en | 9.0230 | 356 | | manishiitg/open-aditi-v6-llama3 | en | 9.0197 | 356 | | manishiitg/open-aditi-hi-v3 | en | 8.9615 | 356 | | manishiitg/open-aditi-hi-v4 | en | 8.9188 | 356 | | google/gemma-7b-it | en | 8.8191 | 356 | | Qwen/Qwen1.5-4B-Chat | en | 8.7500 | 356 | | google/gemma-2b-it | en | 8.4671 | 356 | | manishiitg/open-aditi-hi-v2 | en | 8.4584 | 356 | | ai4bharat/Airavata | en | 7.3834 | 356 | | manishiitg/open-aditi-hi-v1 | en | 6.6559 | 356 | | sarvamai/OpenHathi-7B-Hi-v0.1-Base | en | 5.9567 | 312 | DHARMA TINY EVAL ============ #### Language Hi | Model | ARC-Easy | bigbench | truthful_qa | BoolQ | winogrande | agieval | ARC-Challenge | MMLU | openbookqa | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | open-aditi-hi-v2 | 0.6245 | 0.4959 | 0.3866 | 0.7192 | 0.5353 | 0.2945 | 0.4828 | 0.3457 | 0.5279 | | open-aditi-hi-v3 | 0.6803 | 0.4553 | 0.2788 | 0.7385 | 0.5390 | 0.2178 | 0.4914 | 0.3346 | 0.5688 | | open-aditi-hi-v4 | 0.6989 | 0.4526 | 0.2714 | 0.7231 | 0.5167 | 0.2331 | 0.5302 | 0.3123 | 0.5316 | | open-aditi-v6-gemma | 0.7212 | 0.4146 | 0.3234 | 0.6923 | 0.4870 | 0.2638 | 0.4957 | 0.3680 | 0.4349 | | open-aditi-v6-llama3 | 0.5688 | 0.4119 | 0.2268 | 0.6500 | 0.4498 | 0.2331 | 0.4310 | 0.3420 | 0.3792 | | open-aditi-hi-v1 | 0.4572 | 0.3767 | 0.2230 | 0.6346 | 0.4647 | 0.1840 | 0.3405 | 0.3271 | 0.3532 | | OpenHermes-2.5-Mistral-7B | 0.3309 | 0.4201 | 0.3197 | 0.6077 | 0.4981 | 0.2331 | 0.3276 | 0.3086 | 0.3086 | | OpenHathi-7B-Hi-v0.1-Base | 0.2862 | 0.3333 | 0.5130 | 0.6077 | 0.4907 | 0.2301 | 0.3017 | 0.2677 | 0.1933 | | Airavata | 0.2751 | 0.1274 | 0.2268 | 0.0615 | 0.3866 | 0.1104 | 0.2845 | 0.1450 | 0.3383 | | gemma-7b-it | 0.1227 | 0.0786 | 0.0743 | 0.1808 | 0.1561 | 0.0491 | 0.1078 | 0.0818 | 0.0855 | #### Language En | Model | ARC-Easy | bigbench | truthful_qa | BoolQ | winogrande | agieval | ARC-Challenge | MMLU | openbookqa | | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | | OpenHermes-2.5-Mistral-7B | 0.8922 | 0.5745 | 0.3197 | 0.8346 | 0.6989 | 0.4908 | 0.7802 | 0.5911 | 0.7621 | | open-aditi-hi-v2 | 0.8625 | 0.5149 | 0.3532 | 0.8192 | 0.6877 | 0.4571 | 0.7500 | 0.5613 | 0.7732 | | open-aditi-hi-v4 | 0.8959 | 0.5041 | 0.2862 | 0.8423 | 0.6914 | 0.4571 | 0.7716 | 0.5651 | 0.7138 | | open-aditi-hi-v3 | 0.8773 | 0.4986 | 0.3048 | 0.8385 | 0.6766 | 0.4663 | 0.7371 | 0.5613 | 0.7249 | | Qwen1.5-7B-Chat | 0.8922 | 0.5122 | 0.2007 | 0.8000 | 0.6654 | 0.4294 | 0.7759 | 0.5799 | 0.7621 | | open-aditi-v6-gemma | 0.8699 | 0.4959 | 0.2602 | 0.7385 | 0.5465 | 0.4540 | 0.7371 | 0.5167 | 0.6654 | | open-aditi-v6-llama3 | 0.8810 | 0.4634 | 0.1822 | 0.7577 | 0.5353 | 0.4110 | 0.7457 | 0.5688 | 0.6506 | | open-aditi-hi-v1 | 0.8104 | 0.3902 | 0.2491 | 0.6962 | 0.5539 | 0.3681 | 0.6379 | 0.5056 | 0.5911 | | Airavata | 0.7026 | 0.4282 | 0.3123 | 0.7192 | 0.5651 | 0.3313 | 0.5172 | 0.3792 | 0.5093 | | OpenHathi-7B-Hi-v0.1-Base | 0.4684 | 0.3062 | 0.4758 | 0.6346 | 0.5167 | 0.2577 | 0.3017 | 0.2788 | 0.2714 | Task: BoolQ Metric: score Task: ARC-Easy Metric: score Task: openbookqa Metric: score Task: winogrande Metric: score Task: ARC-Challenge Metric: score Task: truthful_qa Metric: score Task: bigbench Metric: score Task: MMLU Metric: score Task: agieval Metric: score [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: meta-llama/Meta-Llama-3-8B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: manishiitg/aditi-syn-train-small-v3 type: completion # 25 has only sythentic data, and has judge removed data hub_model_id: manishiitg/open-aditi-chat-hi-1.25-llama3 hf_use_auth_token: true wandb_project: open-aditi-chat-hi-1.25-llama3 dataset_prepared_path: manishiitg push_dataset_to_hub: manishiitg val_set_size: .1 output_dir: /sky-notebook/manishiitg/open-aditi-chat-hi-1.25-llama3 adapter: qlora lora_model_dir: save_safetensors: true sequence_len: 2048 sample_packing: true pad_to_sequence_len: true eval_sample_packing: false lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true wandb_entity: wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 6 num_epochs: 1 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: auto_resume_from_checkpoints: true ## manage check point resume from here local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 2 eval_table_size: eval_table_max_new_tokens: 128 save_steps: 20 ## increase based on your dataset save_strategy: steps debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: pad_token: <|end_of_text|> ```

# open-aditi-chat-hi-1.25-llama3 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 6 - eval_batch_size: 6 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 384 - total_eval_batch_size: 48 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.5388 | 0.01 | 1 | 2.5709 | | 0.8839 | 0.5 | 88 | 1.9648 | | 0.88 | 1.0 | 176 | 1.9727 | ### Framework versions - PEFT 0.9.0 - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu121 - Datasets 2.18.0 - Tokenizers 0.15.0