File size: 6,675 Bytes
a4c3c6a 47b0204 a4c3c6a 47b0204 a4c3c6a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
---
license: mit
library_name: colpali
language:
- en
tags:
- vidore
---
# ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
## Model Description
This model is trained with an extra 150k samples from the Docmatix dataset !
This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
## Model Training
### Dataset
Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
A validation set is created with 2% of the samples to tune hyperparameters.
*Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
### Parameters
All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
with `alpha=32` and `r=32` on the transformer layers from the language model,
as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
## Usage
```python
import torch
import typer
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoProcessor
from PIL import Image
from colpali_engine.models.paligemma_colbert_architecture import ColPali
from colpali_engine.trainer.retrieval_evaluator import CustomEvaluator
from colpali_engine.utils.colpali_processing_utils import process_images, process_queries
from colpali_engine.utils.image_from_page_utils import load_from_dataset
def main() -> None:
"""Example script to run inference with ColPali"""
# Load model
model_name = "manu/colpali-3b-mix-448-docmatix"
model = ColPali.from_pretrained("google/paligemma-3b-mix-448", torch_dtype=torch.bfloat16, device_map="cuda").eval()
model.load_adapter(model_name)
processor = AutoProcessor.from_pretrained(model_name)
# select images -> load_from_pdf(<pdf_path>), load_from_image_urls(["<url_1>"]), load_from_dataset(<path>)
images = load_from_dataset("vidore/docvqa_test_subsampled")
queries = ["From which university does James V. Fiorca come ?", "Who is the japanese prime minister?"]
# run inference - docs
dataloader = DataLoader(
images,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_images(processor, x),
)
ds = []
for batch_doc in tqdm(dataloader):
with torch.no_grad():
batch_doc = {k: v.to(model.device) for k, v in batch_doc.items()}
embeddings_doc = model(**batch_doc)
ds.extend(list(torch.unbind(embeddings_doc.to("cpu"))))
# run inference - queries
dataloader = DataLoader(
queries,
batch_size=4,
shuffle=False,
collate_fn=lambda x: process_queries(processor, x, Image.new("RGB", (448, 448), (255, 255, 255))),
)
qs = []
for batch_query in dataloader:
with torch.no_grad():
batch_query = {k: v.to(model.device) for k, v in batch_query.items()}
embeddings_query = model(**batch_query)
qs.extend(list(torch.unbind(embeddings_query.to("cpu"))))
# run evaluation
retriever_evaluator = CustomEvaluator(is_multi_vector=True)
scores = retriever_evaluator.evaluate(qs, ds)
print(scores.argmax(axis=1))
if __name__ == "__main__":
typer.run(main)
```
## Limitations
- **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
- **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
## License
ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
## Contact
- Manuel Faysse: [email protected]
- Hugues Sibille: [email protected]
- Tony Wu: [email protected]
## Citation
If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
```bibtex
@misc{faysse2024colpaliefficientdocumentretrieval,
title={ColPali: Efficient Document Retrieval with Vision Language Models},
author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
year={2024},
eprint={2407.01449},
archivePrefix={arXiv},
primaryClass={cs.IR},
url={https://arxiv.org/abs/2407.01449},
}
``` |