File size: 10,917 Bytes
c961522
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
---
license: apache-2.0
language:
- en
- it
- fr
- de
- es
base_model:
- MrLight/dse-qwen2-2b-mrl-v1
tags:
- vidore
---

# mcdse-2b-v1

![](cover.png)

mcdse-2b-v1 is an experimental model designed for multilingual visual document retrieval.

This model allows you to embed page/slide screenshots and query them using natural language. Whether it's tables, graphs, charts, schemas, images, or text, mcdse-2b-v1 encodes everything into a single embedding vector, eliminating the need for traditional OCR, document layout analysis, reading order detection, chunking, table/formula extraction... 

- **Understands ๐Ÿ‡ฎ๐Ÿ‡น Italian, ๐Ÿ‡ช๐Ÿ‡ธ Spanish, ๐Ÿ‡ฌ๐Ÿ‡ง English, ๐Ÿ‡ซ๐Ÿ‡ท French and ๐Ÿ‡ฉ๐Ÿ‡ช German**

- **Matryoshka Representation Learning:** shrink embeddings from 1536 to 256 dimensions while maintaining 95% of the quality. A 6x reduction with negligible impact on performance!

- **Top-tier Binarization**: 768-dimensional binary vectors retain 99% retrieval quality of the original 1536-dimensional float vectors. With binary vectors, you can encode **100 million multilingual pages in just 10GB**.

- **Fast vLLM inference:** run inference on vLLM and efficiently serve embeddings at scale, production ready.

For more information about this model or how it was trained, visit the [announcement blogpost](https://huggingface.co/blog/marco/announcing-mcdse-2b-v1).

## Usage

**Initialize model and processor**
```python
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration
from PIL import Image
import torch
import math

model = Qwen2VLForConditionalGeneration.from_pretrained(
    'marco/mcdse-2b-v1',
    attn_implementation="flash_attention_2",
    torch_dtype=torch.bfloat16,
    device_map="cuda:0"
).eval()

min_pixels = 1 * 28 * 28
max_pixels = 960 * 28 * 28

processor = AutoProcessor.from_pretrained(
    'marco/mcdse-2b-v1',
    min_pixels=min_pixels,
    max_pixels=max_pixels
)

model.padding_side = "left"
processor.tokenizer.padding_side = "left"

document_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>What is shown in this image?<|im_end|>\n<|endoftext|>"

query_prompt = "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>Query: %s<|im_end|>\n<|endoftext|>"
```

**Encode queries**
```python
def encode_queries(queries: list[str], dimension: int):
    dummy_image = Image.new('RGB', (56, 56))
    inputs = processor(
        text=[query_prompt % x for x in queries],
        images=[dummy_image for _ in queries],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```

**Encode documents**
```python
def round_by_factor(number: float, factor: int) -> int:
    return round(number / factor) * factor

def ceil_by_factor(number: float, factor: int) -> int:
    return math.ceil(number / factor) * factor

def floor_by_factor(number: float, factor: int) -> int:
    return math.floor(number / factor) * factor

def smart_resize(height: int, width: int) -> tuple[int, int]:
        h_bar = max(28, round_by_factor(height, 28))
        w_bar = max(28, round_by_factor(width, 28))
        if h_bar * w_bar > max_pixels:
            beta = math.sqrt((height * width) / max_pixels)
            h_bar = floor_by_factor(height / beta, 28)
            w_bar = floor_by_factor(width / beta, 28)
        elif h_bar * w_bar < min_pixels:
            beta = math.sqrt(min_pixels / (height * width))
            h_bar = ceil_by_factor(height * beta, 28)
            w_bar = ceil_by_factor(width * beta, 28)
        return h_bar, w_bar

def resize(image: Image.Image):
    new_size = smart_resize(image.height, image.width)
    return image.resize(new_size)

def encode_documents(documents: list[Image.Image], dimension: int):
    inputs = processor(
        text=[document_prompt] * len(documents),
        images=[resize(x) for x in documents],
        videos=None,
        padding='longest',
        return_tensors='pt'
    ).to('cuda:0')

    cache_position = torch.arange(0, len(queries))
    inputs = model.prepare_inputs_for_generation(
        **inputs, cache_position=cache_position, use_cache=False)

    with torch.no_grad():
        output = self.model(
            **inputs,
            return_dict=True,
            output_hidden_states=True
        )
    
    embeddings = output.hidden_states[-1][:, -1]
    return torch.nn.functional.normalize(embeddings[:, :dimension], p=2, dim=-1)
```

### vLLM
This model supports vLLM, visit the [announcement blogpost](https://huggingface.co/blog/marco/announcing-mcdse-2b-v1#deployment) to know more.

## Results
Given the scarcity of publicly available datasets for multilingual document image retrieval, the model has been evaluated using a custom-built dataset. This eval dataset was specifically designed to benchmark the model's performance across various languages.

### NDCG@5 (float)
|                     | Average    | English    | Italian    | Spanish    | French     | German     |
|---------------------|------------|------------|------------|------------|------------|------------|
| **1536 dimensions** |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       79.5 |       79.2 |       80.2 |       77.9 |       80.6 |       79.6 |
| mcdse-2b-v1         |   **82.2** |   **80.8** |   **81.2** |   **80.7** |   **84.5** |   **83.8** |
|                     | **+3.28%** | **+1.98%** | **+1.23%** | **+3.47%** | **+4.62%** | **+5.01%** |
| **1024 dimensions** |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       78.3 |       78.8 |       78.5 |       76.5 |         80 |       77.5 |
| mcdse-2b-v1         |   **81.7** |     **80** |   **80.2** |   **80.1** |     **84** |   **84.3** |
|                     | **+4.23%** | **+1.75%** | **+2.12%** | **+4.49%** | **+4.76%** | **+8.07%** |
| **768 dimensions**  |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       77.8 |       78.4 |       78.3 |       75.6 |       80.8 |       75.9 |
| mcdse-2b-v1         |   **81.1** |   **79.6** |   **79.9** |   **79.2** |   **83.3** |   **83.3** |
|                     | **+4.02%** | **+1.51%** | **+2.00%** | **+4.55%** | **+3.00%** | **+8.88%** |
| **512 dimensions**  |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       76.2 |       77.6 |       75.9 |       73.1 |       79.2 |       75.2 |
| mcdse-2b-v1         |   **79.3** |   **78.5** |   **79.1** |   **75.8** |   **81.4** |   **81.7** |
|                     | **+3.91%** | **+1.15%** | **+4.05%** | **+3.56%** | **+2.70%** | **+7.96%** |
| **384 dimensions**  |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       75.7 |       76.2 |       75.5 |       74.6 |       78.4 |         74 |
| mcdse-2b-v1         |   **78.8** |   **77.5** |   **78.5** |   **76.1** |   **80.4** |   **81.4** |
|                     | **+3.86%** | **+1.68%** | **+3.82%** | **+1.97%** | **+2.49%** | **+9.09%** |
| **256 dimensions**  |            |            |            |            |            |            |
| dse-qwen2-2b-mrl-v1 |       73.5 |       74.5 |       73.6 |       70.6 |       74.8 |       73.8 |
| mcdse-2b-v1         |   **78.1** |   **78.5** |   **77.6** |   **76.2** |   **80.1** |   **77.9** |
|                     | **+5.89%** | **+5.10%** | **+5.15%** | **+7.35%** | **+6.62%** | **+5.26%** |

### NDCG@5 (binary)
|                     | Average     | English     | Italian     | Spanish     | French      | German      |
|---------------------|-------------|-------------|-------------|-------------|-------------|-------------|
| **1536 dimensions** |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        75.0 |        75.8 |        75.4 |        72.4 |        78.1 |        73.2 |
| mcdse-2b-v1         |    **80.6** |    **79.5** |    **76.9** |    **81.9** |    **83.7** |    **80.8** |
|                     |  **+6.93%** |  **+4.65%** |  **+1.95%** | **+11.60%** |  **+6.69%** |  **+9.41%** |
| **1024 dimensions** |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        72.2 |        74.8 |          71 |        70.8 |        74.6 |        69.6 |
| mcdse-2b-v1         |    **79.3** |    **78.4** |    **75.4** |    **80.8** |    **82.6** |    **79.5** |
|                     |  **+9.05%** |  **+4.59%** |  **+5.84%** | **+12.38%** |  **+9.69%** | **+12.45%** |
| **768 dimensions**  |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        70.1 |        71.7 |        69.3 |        69.8 |        73.7 |        65.9 |
| mcdse-2b-v1         |    **78.8** |    **77.1** |    **75.4** |      **80** |      **83** |    **78.5** |
|                     | **+11.07%** |  **+7.00%** |  **+8.09%** | **+12.75%** | **+11.20%** | **+16.05%** |
| **512 dimensions**  |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        66.5 |          70 |        65.4 |        63.7 |        70.2 |          63 |
| mcdse-2b-v1         |    **76.6** |    **74.8** |    **74.2** |    **77.7** |    **80.9** |    **75.3** |
|                     | **+13.21%** |  **+6.42%** | **+11.86%** | **+18.02%** | **+13.23%** | **+16.33%** |
| **384 dimensions**  |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        61.1 |        62.7 |        58.5 |        58.6 |        65.1 |        60.8 |
| mcdse-2b-v1         |    **74.3** |    **74.5** |    **71.4** |    **77.2** |    **75.2** |      **73** |
|                     | **+17.67%** | **+15.84%** | **+18.07%** | **+24.09%** | **+13.43%** | **+16.71%** |
| **256 dimensions**  |             |             |             |             |             |             |
| dse-qwen2-2b-mrl-v1 |        54.3 |          59 |        56.5 |        53.6 |          53 |        49.6 |
| mcdse-2b-v1         |    **70.9** |    **72.6** |    **66.4** |    **73.5** |    **72.6** |    **69.2** |
|                     | **+23.31%** | **+18.73%** | **+14.91%** | **+27.07%** | **+27.00%** | **+28.32%** |