File size: 1,558 Bytes
a8a92d6
 
 
 
 
 
 
 
 
950c570
a8a92d6
 
 
 
 
950c570
a8a92d6
 
 
 
 
950c570
a8a92d6
950c570
 
a8a92d6
950c570
a8a92d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imdb
metrics:
- accuracy
- f1
base_model: distilbert-base-uncased
model-index:
- name: finetuning-sentiment-model-3000-samples
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: imdb
      type: imdb
      args: plain_text
    metrics:
    - type: accuracy
      value: 0.8766666666666667
      name: Accuracy
    - type: f1
      value: 0.8825396825396825
      name: F1
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# finetuning-sentiment-model-3000-samples

This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3351
- Accuracy: 0.8767
- F1: 0.8825

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2

### Training results



### Framework versions

- Transformers 4.17.0
- Pytorch 1.10.0+cu111
- Datasets 1.18.4
- Tokenizers 0.11.6