marquesafonso commited on
Commit
a83b114
·
1 Parent(s): e606528

add example fix highlight for dark mode

Browse files
Files changed (1) hide show
  1. README.md +7 -14
README.md CHANGED
@@ -3,11 +3,11 @@ license: mit
3
  language:
4
  - pt
5
  ---
6
- # bertimbau-large-ner-selective
7
 
8
  This model card aims to simplify the use of the [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert) for the Named Entity Recognition task.
9
 
10
- For this model card the we used the <mark style="background-color: #d3d3d3"> **BERT-CRF (total scenario, 10 classes)** </mark> model available in the [ner_evaluation](https://github.com/neuralmind-ai/portuguese-bert/tree/master/ner_evaluation) folder of the original Bertimbau repo.
11
 
12
  Available classes are:
13
  + PESSOA
@@ -27,8 +27,8 @@ Available classes are:
27
  # Load model directly
28
  from transformers import AutoTokenizer, AutoModelForTokenClassification
29
 
30
- tokenizer = AutoTokenizer.from_pretrained("marquesafonso/bertimbau-large-ner-selective")
31
- model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau-large-ner-selective")
32
 
33
  ```
34
 
@@ -37,22 +37,15 @@ model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau
37
  ```
38
  from transformers import pipeline
39
 
40
- pipe = pipeline("ner", model="marquesafonso/bertimbau-large-ner-selective", aggregation_strategy='simple')
41
 
42
- sentence = "Acima de Ederson, abaixo de Rúben Dias. É entre os dois jogadores do Manchester City que se vai colocar Gonçalo Ramos no ranking de vendas mais avultadas do Benfica."
43
 
44
  result = pipe([sentence])
45
 
46
  print(f"{sentence}\n{result}")
47
 
48
- # Acima de Ederson, abaixo de Rúben Dias. É entre os dois jogadores do Manchester City que se vai colocar Gonçalo Ramos no ranking de vendas mais avultadas do Benfica.
49
- # [[
50
- # {'entity_group': 'PESSOA', 'score': 0.99694395, 'word': 'Ederson', 'start': 9, 'end': 16},
51
- # {'entity_group': 'PESSOA', 'score': 0.9918462, 'word': 'Rúben Dias', 'start': 28, 'end': 38},
52
- # {'entity_group': 'ORGANIZACAO', 'score': 0.96376556, 'word': 'Manchester City', 'start': 69, 'end': 84},
53
- # {'entity_group': 'PESSOA', 'score': 0.9993823, 'word': 'Gonçalo Ramos', 'start': 104, 'end': 117},
54
- # {'entity_group': 'ORGANIZACAO', 'score': 0.9033079, 'word': 'Benfica', 'start': 157, 'end': 164}
55
- # ]]
56
  ```
57
 
58
  ## Acknowledgements
 
3
  language:
4
  - pt
5
  ---
6
+ # bertimbau-large-ner-total
7
 
8
  This model card aims to simplify the use of the [portuguese Bert, a.k.a, Bertimbau](https://github.com/neuralmind-ai/portuguese-bert) for the Named Entity Recognition task.
9
 
10
+ For this model card the we used the <mark style="background-color: grey"> BERT-CRF (total scenario, 10 classes) </mark> model available in the [ner_evaluation](https://github.com/neuralmind-ai/portuguese-bert/tree/master/ner_evaluation) folder of the original Bertimbau repo.
11
 
12
  Available classes are:
13
  + PESSOA
 
27
  # Load model directly
28
  from transformers import AutoTokenizer, AutoModelForTokenClassification
29
 
30
+ tokenizer = AutoTokenizer.from_pretrained("marquesafonso/bertimbau-large-ner-total")
31
+ model = AutoModelForTokenClassification.from_pretrained("marquesafonso/bertimbau-large-ner-total")
32
 
33
  ```
34
 
 
37
  ```
38
  from transformers import pipeline
39
 
40
+ pipe = pipeline("ner", model="marquesafonso/bertimbau-large-ner-total", aggregation_strategy='simple')
41
 
42
+ sentence = "James Marsh, realizador de filmes como A Teoria de Tudo ou Homem no Arame, assumiu a missão de criar uma obra biográfica sobre Samue Beckett, figura ímpar da literatura e da dramaturgia do século XX. O guião foi escrito pelo escocês Neil Forsyth, vencedor de dois Baftas."
43
 
44
  result = pipe([sentence])
45
 
46
  print(f"{sentence}\n{result}")
47
 
48
+
 
 
 
 
 
 
 
49
  ```
50
 
51
  ## Acknowledgements