matthieulel commited on
Commit
43a2d09
·
verified ·
1 Parent(s): b827ee1

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: google/vit-base-patch32-224-in21k
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: vit-base-patch32-224-in21k-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # vit-base-patch32-224-in21k-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.5861
24
+ - Accuracy: 0.8365
25
+ - Precision: 0.8366
26
+ - Recall: 0.8365
27
+ - F1: 0.8359
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 0.0001
47
+ - train_batch_size: 32
48
+ - eval_batch_size: 32
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 128
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.4731 | 0.99 | 124 | 1.3850 | 0.6110 | 0.5791 | 0.6110 | 0.5797 |
62
+ | 0.9858 | 2.0 | 249 | 0.8900 | 0.7508 | 0.7578 | 0.7508 | 0.7337 |
63
+ | 0.9475 | 3.0 | 374 | 0.7799 | 0.7599 | 0.7667 | 0.7599 | 0.7559 |
64
+ | 0.7778 | 4.0 | 499 | 0.6798 | 0.7779 | 0.7825 | 0.7779 | 0.7729 |
65
+ | 0.6831 | 4.99 | 623 | 0.6352 | 0.7914 | 0.7916 | 0.7914 | 0.7889 |
66
+ | 0.6953 | 6.0 | 748 | 0.5931 | 0.8044 | 0.8076 | 0.8044 | 0.8023 |
67
+ | 0.6725 | 7.0 | 873 | 0.7304 | 0.7537 | 0.7671 | 0.7537 | 0.7519 |
68
+ | 0.5648 | 8.0 | 998 | 0.6352 | 0.7909 | 0.7961 | 0.7909 | 0.7868 |
69
+ | 0.6127 | 8.99 | 1122 | 0.6087 | 0.7858 | 0.7879 | 0.7858 | 0.7820 |
70
+ | 0.529 | 10.0 | 1247 | 0.5827 | 0.8072 | 0.8074 | 0.8072 | 0.8041 |
71
+ | 0.5212 | 11.0 | 1372 | 0.5787 | 0.8179 | 0.8177 | 0.8179 | 0.8108 |
72
+ | 0.4665 | 12.0 | 1497 | 0.5597 | 0.8168 | 0.8213 | 0.8168 | 0.8134 |
73
+ | 0.5123 | 12.99 | 1621 | 0.5840 | 0.8044 | 0.8163 | 0.8044 | 0.8044 |
74
+ | 0.4918 | 14.0 | 1746 | 0.5592 | 0.8219 | 0.8221 | 0.8219 | 0.8195 |
75
+ | 0.4733 | 15.0 | 1871 | 0.5180 | 0.8382 | 0.8363 | 0.8382 | 0.8346 |
76
+ | 0.4552 | 16.0 | 1996 | 0.5673 | 0.8174 | 0.8181 | 0.8174 | 0.8153 |
77
+ | 0.4004 | 16.99 | 2120 | 0.5711 | 0.8224 | 0.8239 | 0.8224 | 0.8199 |
78
+ | 0.3359 | 18.0 | 2245 | 0.5813 | 0.8168 | 0.8153 | 0.8168 | 0.8147 |
79
+ | 0.4069 | 19.0 | 2370 | 0.5482 | 0.8343 | 0.8352 | 0.8343 | 0.8307 |
80
+ | 0.3783 | 20.0 | 2495 | 0.5658 | 0.8179 | 0.8169 | 0.8179 | 0.8150 |
81
+ | 0.3293 | 20.99 | 2619 | 0.5647 | 0.8247 | 0.8234 | 0.8247 | 0.8230 |
82
+ | 0.3214 | 22.0 | 2744 | 0.5654 | 0.8309 | 0.8289 | 0.8309 | 0.8293 |
83
+ | 0.3285 | 23.0 | 2869 | 0.5943 | 0.8213 | 0.8226 | 0.8213 | 0.8201 |
84
+ | 0.2934 | 24.0 | 2994 | 0.5931 | 0.8264 | 0.8287 | 0.8264 | 0.8259 |
85
+ | 0.3051 | 24.99 | 3118 | 0.5788 | 0.8309 | 0.8325 | 0.8309 | 0.8303 |
86
+ | 0.2911 | 26.0 | 3243 | 0.5700 | 0.8377 | 0.8354 | 0.8377 | 0.8358 |
87
+ | 0.2893 | 27.0 | 3368 | 0.5971 | 0.8286 | 0.8320 | 0.8286 | 0.8291 |
88
+ | 0.2794 | 28.0 | 3493 | 0.5908 | 0.8315 | 0.8307 | 0.8315 | 0.8303 |
89
+ | 0.2506 | 28.99 | 3617 | 0.5914 | 0.8309 | 0.8314 | 0.8309 | 0.8306 |
90
+ | 0.2421 | 29.82 | 3720 | 0.5861 | 0.8365 | 0.8366 | 0.8365 | 0.8359 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a9f8caef21c9c591e468c3706ca54475b41f3a18a13ef6e999be6c3b2b5840bd
3
  size 349874904
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f0238690a3d4933fbac1c5158d00ca5df1707b9365b54709e051995ecccd002
3
  size 349874904