--- license: apache-2.0 base_model: google/vit-base-patch32-224-in21k tags: - image-classification - vision - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: vit-base-patch32-224-in21k-finetuned-galaxy10-decals results: [] --- # vit-base-patch32-224-in21k-finetuned-galaxy10-decals This model is a fine-tuned version of [google/vit-base-patch32-224-in21k](https://huggingface.co/google/vit-base-patch32-224-in21k) on the matthieulel/galaxy10_decals dataset. It achieves the following results on the evaluation set: - Loss: 0.5180 - Accuracy: 0.8382 - Precision: 0.8363 - Recall: 0.8382 - F1: 0.8346 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 30 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 1.4731 | 0.99 | 124 | 1.3850 | 0.6110 | 0.5791 | 0.6110 | 0.5797 | | 0.9858 | 2.0 | 249 | 0.8900 | 0.7508 | 0.7578 | 0.7508 | 0.7337 | | 0.9475 | 3.0 | 374 | 0.7799 | 0.7599 | 0.7667 | 0.7599 | 0.7559 | | 0.7778 | 4.0 | 499 | 0.6798 | 0.7779 | 0.7825 | 0.7779 | 0.7729 | | 0.6831 | 4.99 | 623 | 0.6352 | 0.7914 | 0.7916 | 0.7914 | 0.7889 | | 0.6953 | 6.0 | 748 | 0.5931 | 0.8044 | 0.8076 | 0.8044 | 0.8023 | | 0.6725 | 7.0 | 873 | 0.7304 | 0.7537 | 0.7671 | 0.7537 | 0.7519 | | 0.5648 | 8.0 | 998 | 0.6352 | 0.7909 | 0.7961 | 0.7909 | 0.7868 | | 0.6127 | 8.99 | 1122 | 0.6087 | 0.7858 | 0.7879 | 0.7858 | 0.7820 | | 0.529 | 10.0 | 1247 | 0.5827 | 0.8072 | 0.8074 | 0.8072 | 0.8041 | | 0.5212 | 11.0 | 1372 | 0.5787 | 0.8179 | 0.8177 | 0.8179 | 0.8108 | | 0.4665 | 12.0 | 1497 | 0.5597 | 0.8168 | 0.8213 | 0.8168 | 0.8134 | | 0.5123 | 12.99 | 1621 | 0.5840 | 0.8044 | 0.8163 | 0.8044 | 0.8044 | | 0.4918 | 14.0 | 1746 | 0.5592 | 0.8219 | 0.8221 | 0.8219 | 0.8195 | | 0.4733 | 15.0 | 1871 | 0.5180 | 0.8382 | 0.8363 | 0.8382 | 0.8346 | | 0.4552 | 16.0 | 1996 | 0.5673 | 0.8174 | 0.8181 | 0.8174 | 0.8153 | | 0.4004 | 16.99 | 2120 | 0.5711 | 0.8224 | 0.8239 | 0.8224 | 0.8199 | | 0.3359 | 18.0 | 2245 | 0.5813 | 0.8168 | 0.8153 | 0.8168 | 0.8147 | | 0.4069 | 19.0 | 2370 | 0.5482 | 0.8343 | 0.8352 | 0.8343 | 0.8307 | | 0.3783 | 20.0 | 2495 | 0.5658 | 0.8179 | 0.8169 | 0.8179 | 0.8150 | | 0.3293 | 20.99 | 2619 | 0.5647 | 0.8247 | 0.8234 | 0.8247 | 0.8230 | | 0.3214 | 22.0 | 2744 | 0.5654 | 0.8309 | 0.8289 | 0.8309 | 0.8293 | | 0.3285 | 23.0 | 2869 | 0.5943 | 0.8213 | 0.8226 | 0.8213 | 0.8201 | | 0.2934 | 24.0 | 2994 | 0.5931 | 0.8264 | 0.8287 | 0.8264 | 0.8259 | | 0.3051 | 24.99 | 3118 | 0.5788 | 0.8309 | 0.8325 | 0.8309 | 0.8303 | | 0.2911 | 26.0 | 3243 | 0.5700 | 0.8377 | 0.8354 | 0.8377 | 0.8358 | | 0.2893 | 27.0 | 3368 | 0.5971 | 0.8286 | 0.8320 | 0.8286 | 0.8291 | | 0.2794 | 28.0 | 3493 | 0.5908 | 0.8315 | 0.8307 | 0.8315 | 0.8303 | | 0.2506 | 28.99 | 3617 | 0.5914 | 0.8309 | 0.8314 | 0.8309 | 0.8306 | | 0.2421 | 29.82 | 3720 | 0.5861 | 0.8365 | 0.8366 | 0.8365 | 0.8359 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.15.1