--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-tweet_eval-emotion results: [] --- # distilbert-tweet_eval-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the tweet_eval dataset. It achieves the following results on the evaluation set: - Loss: 0.6404 - Accuracy: 0.6529 - Precision: 0.8110 - Recall: 0.6529 - F1: 0.6507 - Auroc: 0.9184 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - training_steps: 1000 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | Auroc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:------:| | 0.7228 | 0.55 | 500 | 0.7232 | 0.6030 | 0.5625 | 0.6030 | 0.5760 | 0.8937 | | 0.64 | 1.1 | 1000 | 0.6404 | 0.6529 | 0.8110 | 0.6529 | 0.6507 | 0.9184 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.2 - Datasets 2.17.0 - Tokenizers 0.15.1