--- tags: - merge - mergekit - lazymergekit - FelixChao/WestSeverus-7B-DPO-v2 - mayflowergmbh/Wiedervereinigung-7b-dpo-laser - cognitivecomputations/openchat-3.5-0106-laser base_model: - FelixChao/WestSeverus-7B-DPO-v2 - mayflowergmbh/Wiedervereinigung-7b-dpo-laser - cognitivecomputations/openchat-3.5-0106-laser license: apache-2.0 language: - de --- # Brezn-7B Brezn-7B is a dpo aligned merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [FelixChao/WestSeverus-7B-DPO-v2](https://huggingface.co/FelixChao/WestSeverus-7B-DPO-v2) * [mayflowergmbh/Wiedervereinigung-7b-dpo-laser](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo-laser) * [cognitivecomputations/openchat-3.5-0106-laser](https://huggingface.co/cognitivecomputations/openchat-3.5-0106-laser) ## 💻 Usage In order to leverage instruction fine-tuning, your prompt should be surrounded by `[INST]` and `[/INST]` tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id. E.g. ``` text = "[INST] What is your favourite condiment? [/INST]" "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! " "[INST] Do you have mayonnaise recipes? [/INST]" ``` This format is available as a [chat template](https://huggingface.co/docs/transformers/main/chat_templating) via the `apply_chat_template()` method: ```python from transformers import AutoModelForCausalLM, AutoTokenizer device = "cuda" # the device to load the model onto model = AutoModelForCausalLM.from_pretrained("mayflowergmbh/Brezn-7b") tokenizer = AutoTokenizer.from_pretrained("mayflowergmbh/Brezn-7b") messages = [ {"role": "user", "content": "Was ist dein Lieblingsgewürz??"}, {"role": "assistant", "content": "Nun, ich mag besonders gerne einen guten Spritzer frischen Zitronensaft. Er fügt genau die richtige Menge an würzigem Geschmack hinzu, egal was ich gerade in der Küche zubereite!"}, {"role": "user", "content": "Hast du Mayonnaise-Rezepte?"} ] encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt") model_inputs = encodeds.to(device) model.to(device) generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True) decoded = tokenizer.batch_decode(generated_ids) print(decoded[0]) ``` ## mt-bench-de ```yaml { "first_turn": 7.6625, "second_turn": 7.31875, "categories": { "writing": 8.75, "roleplay": 8.5, "reasoning": 6.1, "math": 5.05, "coding": 5.4, "extraction": 7.975, "stem": 9, "humanities": 9.15 }, "average": 7.490625 } ``` ## 🧩 Configuration ```yaml models: - model: mistralai/Mistral-7B-v0.1 # no parameters necessary for base model - model: FelixChao/WestSeverus-7B-DPO-v2 parameters: density: 0.60 weight: 0.30 - model: mayflowergmbh/Wiedervereinigung-7b-dpo-laser parameters: density: 0.65 weight: 0.40 - model: cognitivecomputations/openchat-3.5-0106-laser parameters: density: 0.6 weight: 0.3 merge_method: dare_ties base_model: mistralai/Mistral-7B-v0.1 parameters: int8_mask: true dtype: bfloat16 random_seed: 0 ```