--- tags: - merge - mergekit - lazymergekit - DiscoResearch/DiscoLM_German_7b_v1 - DRXD1000/Phoenix - VAGOsolutions/SauerkrautLM-7b-v1-mistral - malteos/hermeo-7b base_model: - DiscoResearch/DiscoLM_German_7b_v1 - DRXD1000/Phoenix - VAGOsolutions/SauerkrautLM-7b-v1-mistral - malteos/hermeo-7b license: apache-2.0 language: - de - en --- # Wiedervereinigung-7b-dpo ![image/png](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b/resolve/main/Wiedervereinigung-7b.png) This is a dpo aligned merge of our favourite german models, scoring 7.11 on the mt-bench-de average. Since the original models based on mistral - three of them on the brilliant german LeoLM/leo-mistral-hessianai-7b - they are reunited in this merged model. Therefore the name, no nationalist ideas involved :-). To improve result quality they are dpo-trained with a german translation of slimorca dpo using hermeo-7B for reject results. If you are gpu-poor like me you can now use [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory) to train with german datasets. Kudos to the authors of the original models at [DiscoResearch](https://huggingface.co/DiscoResearch) and [VAGOsolutions](https://huggingface.co/VAGOsolutions), [Malte Ostendorff](https://huggingface.co/malteos) and [Matthias Uhlig](https://huggingface.co/DRXD1000). We are your fan club. This model was brought to you and the nvidia bill was paid by [Mayflower GmbH](https://mayflower.de/). ## Benchmark results: mt-bench-de Is the merged model alone already good? Well, of course. But it is even better with the help of some dpo tuning. ```json { "first_turn": 7.3, "second_turn": 6.925, "categories": { "writing": 8.425, "roleplay": 8.6, "reasoning": 5.4, "math": 4.35, "coding": 4.3, "extraction": 7.975, "stem": 8.5, "humanities": 9.35 }, "average": 7.1125 } ``` ## Other Versions A big thank you to [LoneStriker](https://huggingface.co/LoneStriker) for the quantized models. | Name | Quant method | Bits | | ---- | ---- | ---- | [Wiedervereinigung-7b-dpo](https://huggingface.co/mayflowergmbh/Wiedervereinigung-7b-dpo)| Unquantized | 16 | [Wiedervereinigung-7b-dpo-GPTQ](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-GPTQ)| GPTQ | 4 | [Wiedervereinigung-7b-dpo-AWQ](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-AWQ)| AWQ | 4 | [Wiedervereinigung-7b-dpo-GGUF](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-GGUF)| GGUF | 3-8 | [Wiedervereinigung-7b-dpo-8.0bpw-h8-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-8.0bpw-h8-exl2)| EXL2 | 8 | [Wiedervereinigung-7b-dpo-6.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-6.0bpw-h6-exl2)| EXL2 | 6 | [Wiedervereinigung-7b-dpo-5.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-5.0bpw-h6-exl2)| EXL2 | 5 | [Wiedervereinigung-7b-dpo-4.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-4.0bpw-h6-exl2)| EXL2 | 4 | [Wiedervereinigung-7b-dpo-3.0bpw-h6-exl2](https://huggingface.co/LoneStriker/Wiedervereinigung-7b-dpo-3.0bpw-h6-exl2)| EXL2 | 3 | Wiedervereinigung-7b is a [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing) merge of: * [DiscoResearch/DiscoLM_German_7b_v1](https://huggingface.co/DiscoResearch/DiscoLM_German_7b_v1) * [DRXD1000/Phoenix](https://huggingface.co/DRXD1000/Phoenix) * [VAGOsolutions/SauerkrautLM-7b-v1-mistral](https://huggingface.co/VAGOsolutions/SauerkrautLM-7b-v1-mistral) * [malteos/hermeo-7b](https://huggingface.co/malteos/hermeo-7b) ## 🧩 Configuration ```yaml models: - model: LeoLM/leo-mistral-hessianai-7b # No parameters necessary for base model - model: DiscoResearch/DiscoLM_German_7b_v1 parameters: density: 0.6 weight: 0.25 - model: DRXD1000/Phoenix parameters: density: 0.6 weight: 0.25 - model: VAGOsolutions/SauerkrautLM-7b-v1-mistral parameters: density: 0.6 weight: 0.25 - model: malteos/hermeo-7b parameters: density: 0.6 weight: 0.25 merge_method: dare_ties base_model: LeoLM/leo-mistral-hessianai-7b parameters: int8_mask: true dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mayflowergmbh/Wiedervereinigung-7b-dpo" messages = [{"role": "user", "content": "Was ist ein deutsches Large Language Model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```