File size: 4,879 Bytes
df28c17
a0d37a8
 
 
 
 
 
 
 
 
df28c17
 
 
acf8bb5
5ddccc4
7075c6d
df28c17
 
 
 
839e7cc
 
 
df28c17
 
 
 
 
839e7cc
 
df28c17
 
839e7cc
df28c17
 
 
 
 
 
 
 
 
 
839e7cc
 
 
df28c17
 
 
 
839e7cc
 
df28c17
839e7cc
 
df28c17
839e7cc
 
 
 
df28c17
839e7cc
 
 
df28c17
839e7cc
 
df28c17
 
839e7cc
 
 
df28c17
 
839e7cc
 
 
df28c17
 
839e7cc
df28c17
 
839e7cc
 
 
df28c17
 
 
 
839e7cc
 
df28c17
 
 
 
 
 
839e7cc
df28c17
839e7cc
df28c17
839e7cc
df28c17
 
839e7cc
df28c17
 
 
 
 
0758b38
 
5ddccc4
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
---
license: other
license_name: exaone
license_link: LICENSE
language:
- en
- ko
tags:
- lg-ai
- exaone
---
# maywell/EXAONE-3.0-7.8B-Instruct-Llamafied


## Llamafy Script

```python
import torch
import gc

from transformers import LlamaConfig, LlamaForCausalLM, AutoModelForCausalLM, AutoTokenizer
from tqdm import tqdm


def unload_model(model):
    """Clear memory by deleting a model and calling the garbage collector."""
    del model
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()

def create_llama_config(exaone_config):
    """Create and return a Llama configuration based on EXAONE config."""
    return LlamaConfig(
        vocab_size=exaone_config.vocab_size,
        hidden_size=exaone_config.hidden_size,
        intermediate_size=exaone_config.intermediate_size,
        num_hidden_layers=exaone_config.num_layers,
        num_attention_heads=exaone_config.num_attention_heads,
        max_position_embeddings=exaone_config.max_position_embeddings,
        rms_norm_eps=exaone_config.layer_norm_epsilon,
        num_key_value_heads=exaone_config.num_key_value_heads,
        rope_theta=exaone_config.rope_theta,
        bos_token_id=exaone_config.bos_token_id,
        eos_token_id=exaone_config.eos_token_id,
        pad_token_id=exaone_config.pad_token_id,
        attention_bias=False,
    )

def copy_embedding_weights(llama_model, exaone_model):
    """Copy embedding weights from EXAONE to Llama model."""
    llama_model.model.embed_tokens.weight.data = exaone_model.transformer.wte.weight.data.to(llama_model.device)

def copy_layer_weights(llama_layer, exaone_layer, device):
    """Copy weights for a single layer from EXAONE to Llama model."""
    # Self-attention
    llama_layer.self_attn.q_proj.weight.data = exaone_layer.attn.attention.q_proj.weight.data.to(device)
    llama_layer.self_attn.k_proj.weight.data = exaone_layer.attn.attention.k_proj.weight.data.to(device)
    llama_layer.self_attn.v_proj.weight.data = exaone_layer.attn.attention.v_proj.weight.data.to(device)
    llama_layer.self_attn.o_proj.weight.data = exaone_layer.attn.attention.out_proj.weight.data.to(device)
    # MLP
    llama_layer.mlp.gate_proj.weight.data = exaone_layer.mlp.c_fc_0.weight.data.to(device)
    llama_layer.mlp.up_proj.weight.data = exaone_layer.mlp.c_fc_1.weight.data.to(device)
    llama_layer.mlp.down_proj.weight.data = exaone_layer.mlp.c_proj.weight.data.to(device)
    # Layer Norms
    llama_layer.input_layernorm.weight.data = exaone_layer.ln_1.weight.data.to(device)
    llama_layer.post_attention_layernorm.weight.data = exaone_layer.ln_2.weight.data.to(device)

def copy_final_weights(llama_model, exaone_model):
    """Copy final layer norm and LM head weights from EXAONE to Llama model."""
    llama_model.model.norm.weight.data = exaone_model.transformer.ln_f.weight.data.to(llama_model.device)
    llama_model.lm_head.weight.data = exaone_model.lm_head.weight.data.to(llama_model.device)

def port_exaone_to_llama(exaone_model_path, llama_model_path):
    print("Loading EXAONE model and tokenizer...")
    exaone_model = AutoModelForCausalLM.from_pretrained(exaone_model_path, torch_dtype=torch.bfloat16, device_map="auto", trust_remote_code=True)
    exaone_tokenizer = AutoTokenizer.from_pretrained(exaone_model_path, trust_remote_code=True)
    exaone_config = exaone_model.config

    print("Creating Llama configuration...")
    llama_config = create_llama_config(exaone_config)

    print("Initializing Llama model...")
    llama_model = LlamaForCausalLM(llama_config)
    llama_model.to(torch.device("cuda" if torch.cuda.is_available() else "cpu"))

    print("Copying weights...")
    copy_embedding_weights(llama_model, exaone_model)

    for i in tqdm(range(exaone_config.num_layers), desc="Copying layers"):
        copy_layer_weights(llama_model.model.layers[i], exaone_model.transformer.h[i], llama_model.device)

    copy_final_weights(llama_model, exaone_model)

    print("Unloading EXAONE model to free memory...")
    unload_model(exaone_model)

    print(f"Saving ported Llama model and tokenizer to {llama_model_path}")
    llama_model.save_pretrained(llama_model_path, safe_serialization=True, max_shard_size="5GB")
    exaone_tokenizer.save_pretrained(llama_model_path)

    print("Unloading Llama model...")
    unload_model(llama_model)

    print(f"EXAONE model successfully ported to Llama format and saved at {llama_model_path}")

if __name__ == "__main__":
    exaone_model_path = "LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct"
    llama_model_path = "./exa_llamafied"
    port_exaone_to_llama(exaone_model_path, llama_model_path)
```

### Thanks to

> 코드 업데이트와 모델 업로드를 해주신 [@kuotient](https://huggingface.co/kuotient)

> 모델을 공개해주신 `LG AI Research` - [Original Repository](https://huggingface.co/LGAI-EXAONE/EXAONE-3.0-7.8B-Instruct)