mcamara commited on
Commit
d7d6755
·
1 Parent(s): 0547400

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -0
README.md ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: ntu-spml/distilhubert
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: distilhubert-finetuned-gtzan3
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: all
20
+ split: train
21
+ args: all
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.85
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # distilhubert-finetuned-gtzan3
32
+
33
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 1.0442
36
+ - Accuracy: 0.85
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
+ - lr_scheduler_type: linear
61
+ - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
+
64
+ ### Training results
65
+
66
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 1.9942 | 1.0 | 225 | 1.8990 | 0.51 |
69
+ | 1.2485 | 2.0 | 450 | 1.2682 | 0.62 |
70
+ | 0.9196 | 3.0 | 675 | 1.0459 | 0.69 |
71
+ | 0.9034 | 4.0 | 900 | 0.8488 | 0.75 |
72
+ | 0.3035 | 5.0 | 1125 | 0.7319 | 0.76 |
73
+ | 0.0715 | 6.0 | 1350 | 0.8713 | 0.77 |
74
+ | 0.1338 | 7.0 | 1575 | 0.8239 | 0.82 |
75
+ | 0.0254 | 8.0 | 1800 | 0.9324 | 0.83 |
76
+ | 0.0044 | 9.0 | 2025 | 0.7641 | 0.85 |
77
+ | 0.0024 | 10.0 | 2250 | 0.9133 | 0.83 |
78
+ | 0.19 | 11.0 | 2475 | 0.9976 | 0.84 |
79
+ | 0.0013 | 12.0 | 2700 | 0.9684 | 0.83 |
80
+ | 0.0011 | 13.0 | 2925 | 0.9241 | 0.85 |
81
+ | 0.001 | 14.0 | 3150 | 0.9540 | 0.86 |
82
+ | 0.0008 | 15.0 | 3375 | 1.0849 | 0.85 |
83
+ | 0.0007 | 16.0 | 3600 | 0.9005 | 0.85 |
84
+ | 0.0007 | 17.0 | 3825 | 0.9798 | 0.84 |
85
+ | 0.0007 | 18.0 | 4050 | 1.0058 | 0.84 |
86
+ | 0.0005 | 19.0 | 4275 | 1.0524 | 0.85 |
87
+ | 0.0006 | 20.0 | 4500 | 1.0442 | 0.85 |
88
+
89
+
90
+ ### Framework versions
91
+
92
+ - Transformers 4.31.0
93
+ - Pytorch 2.0.1+cu117
94
+ - Datasets 2.13.1
95
+ - Tokenizers 0.13.3